Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application

2016 ◽  
Vol 48 (2) ◽  
pp. 568-574 ◽  
Author(s):  
Seungmun Jung ◽  
Yong Hee Jo ◽  
Changwoo Jeon ◽  
Won-Mi Choi ◽  
Byeong-Joo Lee ◽  
...  
Keyword(s):  
2019 ◽  
Vol 26 (10) ◽  
pp. 1506-1514
Author(s):  
Jisung Yoo ◽  
Won-Mi Choi ◽  
Byeong-Joo Lee ◽  
Gi-Yong Kim ◽  
Hyungjun Kim ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongwei Zhu ◽  
Haonan Li ◽  
Furen Xiao ◽  
Zhixiang Gao

Self-designed (NbTi)C nanoparticles were obtained by mechanical alloying, predispersed in Fe powder, and then added to 1045 steel to obtain modified cast steels. The microstructure of cast steels was investigated by an optical microscope, scanning electron microscope, X-ray diffraction, and a transmission electron microscope. The results showed that (NbTi)C particles can be added to steels and occur in the following forms: original ellipsoidal morphology nanoparticles with uniform dispersion in the matrix, cuboidal nanoparticles in the grain, and microparticles in the grain boundary. Calculations by Thermo-Calc software and solubility formula show that cuboidal (NbTi)C nanoparticles were precipitated in the grain, while the (NbTi)C microparticles were formed by eutectic transformation. The results of the tensile strength of steels show that the strength of modified steels increased and then declined with the increase in the addition amount. When the addition amount was 0.16 wt.%, the modified steel obtained the maximum tensile strength of 759.0 MPa, which is an increase of 52% compared with to that with no addition. The hardness of the modified steel increased with the addition of (NbTi)C nanoparticles. The performance increase was mainly related to grain refinement and the particle strengthening of (NbTi)C nanoparticles, and the performance degradation was related to the increase in eutectic (NbTi)C.


Author(s):  
P A Eynon ◽  
A Whitfield

The design of low-solidity diffuser vanes and the effect on the performance of a turbo-charger compressor is discussed. The effect of vane number and turning angle was investigated while maintaining a basic design with a solidity of 0.69 and a leading edge angle of 75°. This large leading edge angle was specifically chosen so that the vane would be aligned with the low flowrates close to surge. Tests were initially conducted with six, eight and ten vanes and a turning angle of 10°. Based on these results the ten-vane design was selected for further investigation with 15 and 20° of vane turning; this led to vane exit angles of 60 and 55° respectively. All results are compared with those obtained with the standard vaneless diffuser configuration and it was shown that all designs increased and shifted the peak pressure ratio to reduced flowrates. The peak efficiency was reduced relative to that obtained with the vaneless diffuser. Despite the low-solidity configuration none of the vane designs provided a broad operating range without the use of a variable geometry configuration. This was attributed to the selection of a large leading edge vane angle.


Sign in / Sign up

Export Citation Format

Share Document