thermo calc software
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7708
Author(s):  
Maja Vončina ◽  
Tilen Balaško ◽  
Jožef Medved ◽  
Aleš Nagode

During the die-casting process as well as the hot forming process, the tool is subjected to complex thermal, mechanical, and chemical stresses that can cause various types of damage to different parts of the tool. This study was carried out to determine the resistance of various tool steels, i.e., UTOPMO1, HTCS-130, and W600, in molten Al99.7 aluminum alloy at a temperature of 700 °C. The formation kinetics of the interaction layer between the molten aluminum and tool steels was studied using differential scanning calorimetry. Light and field-emission scanning electron microscopy were used to analyze the thickness and nature of the interaction layers, while thermodynamic calculations using the Thermo-Calc software were used to explain the results. The stability of the HTCS-130 and W600 tool steels is better than the stability of the UTOPMO1 tool steel in the molten Al99.7 aluminum. Two interaction layers were formed, which in all cases indicate an intermetallic Al13Fe4 layer near the aluminum alloy and an intermetallic Al5Fe2 layer near the tool steels, containing small round carbides. It was confirmed that Ni reduces the activity of aluminum in the ferrite matrix and causes a reduction in the thickness of the intermetallic layer.


2021 ◽  
Vol 27 (4) ◽  
pp. 207-209
Author(s):  
Peter Prislupčák ◽  
Tibor Kvačkaj ◽  
Jana Bidulská ◽  
Pavol Záhumenský ◽  
Viera Homolová ◽  
...  

The article is aimed to investigate a shift of transformation temperatures of C-Mn-Al HSLA steel with different cooling rates. The transformation temperatures from austenite to ferrite have been determined by dilatometry using thermal-mechanical simulator Gleeble 1500D. To define the start and finishing temperatures of the austenite-ferrite transformation intersectional method was used. Effect of cooling rate on transformation temperature has been evaluated for 0.17, 1, 5, 10, 15, 20, 25°C.s-1. There was found out that rising the cooling rate results in moving transformation temperature range to lower temperatures. The transformation temperatures have been also compared with temperatures calculated using equations of several authors. Some of them have considered cooling rates only. Cooling rates have effect on final microstructure. The effect has been evaluated by measuring hardness (HV10) relating the cooling rates from 0.17 to 25°C.s-1. Increasing cooling rates resulted in increase of hardness. Moreover, Thermo-Calc software was used to determine the Ae3 and Ae1 equilibrium temperatures. Equilibrium transformation temperatures Ae3-Ae1 were higher than experimentally measured by dilatometric method using Gleeble 1500D.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1797
Author(s):  
Evgenii Aryshenskii ◽  
Maksim Lapshov ◽  
Jurgen Hirsch ◽  
Sergey Konovalov ◽  
Viacheslav Bazhenov ◽  
...  

This research is devoted to the study effects of complex alloying of Al-0.3 wt.% Mg-1 wt.% Si and Al-0.5 wt.% Mg-1.3 wt.% Si alloys by small additions of Sc and Zr on the microstructure in the as-cast condition. The effect of small additions of these elements on the microhardness, electrical conductivity, grain size and phase composition of the indicated alloy systems was studied. The methods of optical and electron microscopy were used for the study. Moreover, the phase composition was calculated using the Thermo-Calc software package. The study showed a strong effect of the chemical composition of investigated alloys on the size of the grains, which, with a certain combination of additives, can decrease several times. Grain refinement occurs both due to supercooling and formation of primary Al3Sc particles in the liquid phase. Alloys based on Al-0.5 wt.% Mg-1.3 wt.% Si are more prone to the formation of this phase since a lower concentration of Sc is required for it to occur. In addition, more silicon interacts with other elements. At the same time, Al-0.3 wt.% Mg-1 wt.% Si requires lower temperature for complete dissolution of Mg2Si, which can contribute to more efficient heat treatment, which includes reducing the number of steps. TEM data show that during ingot cooling (AlSi)3ScZr dispersoid precipitates. This dispersoid could precipitate as coherent and semi-coherent particles with L12 structure as well as needle-shaped particles. The precipitation of coherent and semi-coherent particles during cooling of the ingot indicates that they can be obtained during subsequent multistage heat treatment. In addition, in the Al0,5Mg1,3Si0,3Sc alloy, metastable β’’ (Mg5Si6) are precipitated.


2021 ◽  
Author(s):  
Alexandre B. Gontcharov ◽  
Paul Lowden ◽  
Ashutosh Jena ◽  
Sunyong Kwon ◽  
Mathieu Brochu

Abstract Chemical composition, structure, mechanical and oxidation properties of welds produced utilizing laser direct energy deposition process of a newly developed LW4280 welding powder will be presented. Crack-free and high-density specimens were fabricated for manufacturing standard and subsized tensile test samples as per ASTM E-8. Optical and scanning electron microscopy revealed the formation of epitaxial grain growth during solidification of the welding pool followed by precipitation of fine gamma prime phase during the reheating from the subsequent weld layers. A sub-solvus primary aging temperature determined using Thermo-Calc software followed by secondary aging resulted in precipitation of above 49% of cuboidal γ′ phase. Excellent ultimate tensile strength of 1310 MPa (190 ksi), 0.2% yield strength of 855 MPa (124 ksi), and elongation of 18.7% were measured at ambient temperature. At 926°C (1700°F), the tensile testing yielded of 579 MPa (84 ksi), 0.2% yield strength of 462 MPa (67 ksi), and elongation of 18.8%. Cyclic oxidation resistance of the LW4280 weld material at 1120°C (2048°F) was superior to Rene 80 and Mar M247 while slightly below Rene 142.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 890
Author(s):  
Evgeniya Naumova ◽  
Vitali Doroshenko ◽  
Mikhail Barykin ◽  
Tatyana Sviridova ◽  
Alexandra Lyasnikova ◽  
...  

In the present paper, Natural Metal-Matrix Composites (NMMC) based on multicomponent hypereutectic Al-Ca-(Mn)-(Ni) alloys were studied in as-cast, annealed and rolled conditions. Thermo-Calc software and microstructural observations were utilised for analysing the equilibrium and actual phase composition of the alloys including correction of the Al-Ca-Mn system liquidus projection and the solid phase distribution in the Al-Ca-Mn-Ni system. A previously unknown Al10CaMn2 was discovered by both electron microprobe analysis and X-ray studies. The Al-6Ca-3Mn, Al-8Ca-2Mn, Al-8Ca-2Mn-1Ni alloys with representative NMMC structure included ultrafine Сa-rich eutectic and various small-sized primary crystals were found to have excellent feasibility of rolling as compared to its hypereutectic Al-Si counterpart. What is more, Al-Ca alloys showed comparable Coefficient of Thermal Expansion values due to enormous volume fraction of Al-based eutectic and primary intermetallics. Analysis of tensile samples’ fracture surfaces revealed that primary intermetallics may act either as stress raisers or malleable particles depending on their stiffness under deformation. It is shown that a compact morphology can be achieved by conventional casting without using any refining agents. Novel hypereutectic Al-Ca NMMC materials solidifying with the formation of Al10Mn2Ca primary compound have the best ductility and strength. We reasonably propose these materials for high-load pistons.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 441
Author(s):  
Mingwen Bai ◽  
Ying Chen ◽  
Ping Xiao

The depletion of Pt in Pt-enriched bond coats due to inter-diffusion with superalloys has been a critical concern for the long-term oxidation resistance of thermal barrier coatings. This study investigated the diffusion behaviour of Pt between CMSX-4 superalloys and two commercial Pt-enriched bond coats comprising intermetallic γ′/γ-phase or β-phase, with the aim to understand the mechanism that leads to the depletion of Pt at high temperatures. The results demonstrated that the diffusion of Pt in superalloy disrupts its phase equilibrium, causes a significant lattice parameter misfit between the γ-phase and γ′-phase, and results in the formation of large γ′-grains with irregular shapes and random orientations. In addition, by using the Thermo-Calc software, Pt was found to have negative chemical interactions with both Al and Ta that stabilise Pt by decreasing its chemical activity. The depletion of Al due to the growth of Al2O3 scale during oxidation increases the activity of Pt and therefore accelerates the inwards depletion of Pt towards superalloys.


Author(s):  
Liam Hardwick ◽  
Pat Rodgers ◽  
Ed Pickering ◽  
Russell Goodall

AbstractBrazing is a crucial joining technology in industries where nickel-superalloy components must be joined. Nickel-based brazing filler metals are extensively employed, possessing excellent mechanical properties, corrosion resistance, and retained strength at elevated temperatures. To function as a filler metal, the alloy melting point must be reduced to below that of the materials being joined, but the addition of melting point depressants (MPDs) such as boron, silicon, and phosphorus can, however, lead to the formation of brittle intermetallics, potentially compromising the joint performance. In the present work, a novel multi-principal element brazing alloy (in the style of a high entropy alloy), utilizing Ge as an alternative MPD along with a reduced B addition, is investigated. The design process considered binary phase diagrams and predictions based on Thermo-Calc software and empirical thermodynamic parameters. The alloy was used to vacuum braze nickel-superalloy Inconel-718, and microstructural and mechanical investigations are reported. The maximum shear strength achieved was 297 MPa with a brazing temperature of 1100 °C and 60-minute hold time, with isothermal solidification completed. Shear strength was only slightly reduced with increased joint width. Assessments are made of the ability to accurately predict properties of multi-principle element alloys using Thermo-Calc software and empirical thermodynamic parameters.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Franjo Kozina ◽  
Zdenka Zovko Brodarac ◽  
Sandra Brajčinović ◽  
Mitja Petrič

The utilization of aluminum-lithium-magnesium (Al-Li-Mg) alloys in the transportation industry is enabled by excellent engineering properties. The mechanical properties and corrosion resistance are influenced by the microstructure development comprehending the solidification of coherent strengthening precipitates, precipitation of course and angular equilibrium phases as well as the formation and widening of the Precipitate-free zone. The research was performed to determine the microstructure degradation of Al-2.18Mg-1.92Li alloy in a corrosive environment using electrochemical measurements. The solidification sequence of the Al-2.18Mg-1.92Li alloy, obtained using Thermo–Calc software support, indicated the transformation of the αAl dendritic network and precipitation of AlLi (δ), Al2LiMg (T), and Al8Mg5 (β) phase. All of the phases are anodic with respect to the αAl enabling microstructure degradation. To achieve higher microstructure stability, the sample was solution hardened at 520 °C. However, the sample in as-cast condition showed a lower corrosion potential (−749.84 mV) and corrosion rate (17.01 mm/year) with respect to the solution-hardened sample (−752.52 mV, 51.24 mm/year). Higher microstructure degradation of the solution-hardened sample is a consequence of δ phase precipitation at the grain boundaries and inside the grain of αAl, leading to intergranular corrosion and cavity formation. The δ phase precipitates from the Li and Mg enriched the αAl solid solution at the solution-hardening temperature.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongwei Zhu ◽  
Haonan Li ◽  
Furen Xiao ◽  
Zhixiang Gao

Self-designed (NbTi)C nanoparticles were obtained by mechanical alloying, predispersed in Fe powder, and then added to 1045 steel to obtain modified cast steels. The microstructure of cast steels was investigated by an optical microscope, scanning electron microscope, X-ray diffraction, and a transmission electron microscope. The results showed that (NbTi)C particles can be added to steels and occur in the following forms: original ellipsoidal morphology nanoparticles with uniform dispersion in the matrix, cuboidal nanoparticles in the grain, and microparticles in the grain boundary. Calculations by Thermo-Calc software and solubility formula show that cuboidal (NbTi)C nanoparticles were precipitated in the grain, while the (NbTi)C microparticles were formed by eutectic transformation. The results of the tensile strength of steels show that the strength of modified steels increased and then declined with the increase in the addition amount. When the addition amount was 0.16 wt.%, the modified steel obtained the maximum tensile strength of 759.0 MPa, which is an increase of 52% compared with to that with no addition. The hardness of the modified steel increased with the addition of (NbTi)C nanoparticles. The performance increase was mainly related to grain refinement and the particle strengthening of (NbTi)C nanoparticles, and the performance degradation was related to the increase in eutectic (NbTi)C.


Sign in / Sign up

Export Citation Format

Share Document