cast steels
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7794
Author(s):  
Janusz Krawczyk ◽  
Michał Bembenek ◽  
Jan Pawlik

The main task for a ballast bed is to transmit the sleeper pressure in a form of stress cone to the subsoil, provide proper drainage and resist the sleeper displacement. Poorly maintained ballast could severely limit the maximum speed capacity and create further problems with the structural integrity, possibly leading to a complete failure of a given rail line. To prevent the unwanted corollaries, the ballast bed has to be periodically cleaned with an appropriate machinery. In this paper the authors investigated the effect of the chemical composition on the physical properties of the ballast excavating chains made of high-manganese steels. The authors focused on the wear mechanism, work hardening ability and hardness in the cross-sections areas. A microstructure analysis was performed as well, and observations revealed divergent morphology of precipitations at the grain boundaries, which influenced the size of austenite grains. The deformation twins formed as a result of operation were noticed in the samples. Research has shown that less carbon and chromium reduces the hardness of cast steel, and it specifically affects the ability to strain hardening. The authors explained the role of adjustments in chemical composition in the operational properties of high-manganese cast steels. It has been shown in the paper that different chemical compositions affect the properties of the alloys, and this causes different types of wear. The high content of chromium increases the hardness of materials before and after plastic deformation hardening, which in the conditions of selector chains results in greater dimensional stability during wear of holes in pin joints and will be more susceptible to abrasive wear in the presence of dusts from the ballast than creep.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042011
Author(s):  
M Egorov ◽  
R Egorova ◽  
A Atrohov ◽  
V Ekilik

Abstract At present, powder materials are used in practically all branches of industry, from medicine to aerospace technology. This is a wide range of materials ranging from constructional and instrumental materials and ending with special-purpose materials and medical implants. Powder metallurgy methods are most often used where the manufacture of products with desired properties is impossible using traditional methods: casting, stamping, etc. Heat treatment is understood as a set of operations of heating, holding at high temperatures and cooling in order to change the structure and workability of the material, improve the combination of its mechanical and physical properties without changing the shape and size of products. Heat treatment is an effective method for improving the physical and mechanical properties and wear resistance of steel. The specific features of sintered steels (porosity, structural heterogeneity, high oxidizability, etc.) make it difficult to use the technological modes of heat treatment developed for cast steels, although the main regularities of the processes occurring during heating and cooling of compact steel can be transferred to sintered materials. Heat treatment of powder steels has a number of features, primarily due to residual porosity, as well as chemical and structural heterogeneity.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042024
Author(s):  
M Egorov ◽  
R Egorova ◽  
A Atrohov ◽  
V Ekilik

Abstract At present, powder materials are used in practically all branches of industry, from medicine to aerospace technology. This is a wide range of materials ranging from constructional and instrumental materials and ending with special-purpose materials and medical implants. Powder metallurgy methods are most often used where the manufacture of products with desired properties is impossible using traditional methods: casting, stamping, etc. The production of all these materials is based on such basic operations as: obtaining starting materials, molding from these materials blanks of a given shape, size and strength, and sintering, intended for the final formation of the required properties and dimensions. The peculiarity of powder metallurgy technology allows creating a huge variety of developed technological schemes, which puts these technologies to a new level and allows for the rapid development of many industries. Alloying powder steels, in contrast to cast steels, has a number of characteristic features due to the specificity of their production. The structure of powder alloy steels and their properties depend on the methods of obtaining steels and technological features of their production. The following main methods of obtaining powder alloyed steels can be named: preparation of multicomponent mixtures of powders of iron and alloying elements and their subsequent processing; the use of alloyed iron powders, to which, if necessary, add carbon or other alloying elements; impregnation with liquid alloying metals or diffusion saturation of frameworks sintered from iron powders.


Author(s):  
Oscar Ríos-Diez ◽  
Ricardo Aristizábal-Sierra ◽  
Claudia Serna-Giraldo ◽  
Adriana Eres-Castellanos ◽  
Carlos García-Mateo

2021 ◽  
Vol 11 ◽  
pp. 1343-1355
Author(s):  
Oscar Ríos-Diez ◽  
Ricardo Aristizábal-Sierra ◽  
Claudia Serna-Giraldo ◽  
Adriana Eres-Castellanos ◽  
Carlos García-Mateo
Keyword(s):  

2021 ◽  
Vol 1,2021 (1,2021(126)) ◽  
pp. 18-22
Author(s):  
Projdak Yuri ◽  
Podgorniy Sergey ◽  
Tregubenko Genadii ◽  
Polyakov Georgii ◽  
Podyash Lyubov

Purpose. Investigate the effect of complex microalloying with nitrogen, titanium and aluminum on the structure and properties of cast steels at elevated temperatures. Methodology. Methods of optical microscopy were used for metallographic analysis of the microstructure of steels. The mechanical properties at room and elevated temperatures were determined for static tension, crease and impact bending. Results. The technology of carbonitride strengthening of silicon-manganese production steels has passed pilot testing. The results of mechanical tests indicate a favorable complex effect of nitrogen, titanium and aluminum on the properties of 20GSL steel in the entire range of operating temperatures. Scientific novelty. For the first time, the effect of nano-dispersed carbonitride phases (TiN, AlN) on the mechanical properties of low-alloy silicon-manganese steel of the GSL type at elevated temperatures (250-4500C) has been investigated. Practical value. The use of carbonitride technology for strengthening silicon-manganese heat-resistant electric steel provides an increase in operational reliability, an increase in the service life and reduce the metal consumption of equipment for power engineering. Keywords: technology, electric steel, heat resistance, carbonitride reinforcement, microalloying, steel 20GSL.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Hongwei Zhu ◽  
Haonan Li ◽  
Furen Xiao ◽  
Zhixiang Gao

Self-designed (NbTi)C nanoparticles were obtained by mechanical alloying, predispersed in Fe powder, and then added to 1045 steel to obtain modified cast steels. The microstructure of cast steels was investigated by an optical microscope, scanning electron microscope, X-ray diffraction, and a transmission electron microscope. The results showed that (NbTi)C particles can be added to steels and occur in the following forms: original ellipsoidal morphology nanoparticles with uniform dispersion in the matrix, cuboidal nanoparticles in the grain, and microparticles in the grain boundary. Calculations by Thermo-Calc software and solubility formula show that cuboidal (NbTi)C nanoparticles were precipitated in the grain, while the (NbTi)C microparticles were formed by eutectic transformation. The results of the tensile strength of steels show that the strength of modified steels increased and then declined with the increase in the addition amount. When the addition amount was 0.16 wt.%, the modified steel obtained the maximum tensile strength of 759.0 MPa, which is an increase of 52% compared with to that with no addition. The hardness of the modified steel increased with the addition of (NbTi)C nanoparticles. The performance increase was mainly related to grain refinement and the particle strengthening of (NbTi)C nanoparticles, and the performance degradation was related to the increase in eutectic (NbTi)C.


2020 ◽  
Vol 33 (6) ◽  
pp. 258-265
Author(s):  
Nicolás Emanuel Tenaglia ◽  
Alejandro Basso ◽  
Juan Massone ◽  
Roberto Boeri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document