Long-Term Creep-Rupture Behavior of Alloy Inconel 740/740H

Author(s):  
M. Render ◽  
M. L. Santella ◽  
X. Chen ◽  
P. F. Tortorelli ◽  
V. Cedro
Author(s):  
M. Render ◽  
M. L. Santella ◽  
X. Chen ◽  
P. F. Tortorelli ◽  
V. Cedro

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
K. Maruyama ◽  
N. Sekido ◽  
K. Yoshimi

Predictions as to 105 h creep rupture strength of grade 91 steel have been made recently. The predicted values are examined with long-term creep rupture data of the steel. Three creep rupture databases were used in the predictions: data of tube products of grade 91 steel reported in National Institute for Materials Science (NIMS) Creep Data Sheet (NIMS T91 database), data of T91 steel collected in Japan, and data of grade 91 steel collected by an American Society of Mechanical Engineers (ASME) code committee. Short-term creep rupture data points were discarded by the following criteria for minimizing overestimation of the strength: selecting long-term data points with low activation energy (multiregion analysis), selecting data points crept at stresses lower than a half of proof stress (σ0.2/2 criterion), and selecting data points longer than 1000 h (cutoff time of 1000 h). In the case of NIMS T91 database, a time–temperature parameter (TTP) analysis of a dataset selected by multiregion analysis can properly describe the long-term data points and gives the creep rupture strength of 68 MPa at 600 °C. However, TTP analyses of datasets selected by σ0.2/2 criterion and cutoff time of 1000 h from the same database overestimate the data points and predict the strength over 80 MPa. Datasets selected by the same criterion from the three databases provide similar values of the strength. The different criteria for data selection have more substantial effects on predicted values of the strength of the steel than difference of the databases.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Ryuya Takanashi ◽  
Yoshinori Ohashi ◽  
Wataru Ishihara ◽  
Kazushige Matsumoto

AbstractCross-laminated timber (CLT) has been used extensively in timber construction. CLT panels are typically used in roofs and floors that carry a continuous load, and it is important to examine the long-term loading capacity of CLT. However, studies that focus on the long-term loading capacity of CLT are limited. To this end, we conducted long-term out-of-plane bending tests on seven-layer CLT made from Japanese larch (Larix kaempferi) under constant environmental conditions, investigated creep performance and duration of load, and experimentally analyzed creep rupture behavior. The mean estimated relative creep after 50 years was 1.49. The sample showed a satisfactory resistance to creep as a building material. The duration of load of most of the specimens in this study was shorter than the conventional value of small clear wood specimens. Specimens had a lower duration of load capacity than solid lumber. According to the results of survival analysis, a loading level of 70% or more caused the initial failure of specimens. Creep rupture of most of the specimens occurred at less deflection than displacement at failure in the short-term loading test. Additional studies focusing on the effects of finger joints, transverse layers, and width of a specimen on creep rupture behavior are suggested.


2010 ◽  
Vol 96 (10) ◽  
pp. 620-628 ◽  
Author(s):  
Masahiko Arai ◽  
Kentaro Asakura ◽  
Hiroyuki Doi ◽  
Hirotsugu Kawanaka ◽  
Toshihiko Koseki ◽  
...  

2007 ◽  
Vol 345-346 ◽  
pp. 553-556 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

Recent researches have shown the premature breakdown of creep rupture strength in long term creep region of advanced high Cr ferritic steels. As safe operation of power plants becomes a serious problem we should be able to detect and predict the breakdown transition of creep rupture strength. Some methods for detecting the breakdown transition have been presented till now like the measurement of reduction of area after creep rupture and particle size of laves phase. However it will be more economic if we make use of non-destructive tests, for example, hardness testing. In this paper 3 types of ferritic steels with different Cr concentration have been studied. The results suggest that the hardness of aged structures is constant independently of exposure time in short term region, whereas the hardness breaks down in long term region. The boundary of breakdown in hardness coincides with that of breakdown in creep rupture strength.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Imanuel Tarigan ◽  
Keiichi Kurata ◽  
Naoki Takata ◽  
Takashi Matsuo ◽  
Masao Takeyama

ABSTRACTThe creep behavior of a new type of austenitic heat-resistant steel Fe-20Cr-30Ni-2Nb (at.%), strengthened by intermetallic Fe2Nb Laves phase, has been examined. Particular attention has been given to the role of grain boundary Laves phase in the strengthening mechanism during long-term creep. The creep resistance increases with increasing area fraction (ρ) of grain boundary Laves phase according to equation ε/ε = (1−ρ), where ε0 is the creep rate at ρ = 0. In addition, the creep rupture life is also extended with increasing ρ without ductility loss, which can yield up to 77% of elongation even at ρ = 89%. Microstructure analysis revealed local deformation and well-developed subgrains formation near the grain boundary free from precipitates, while dislocation pile-ups were observed near the grain boundary Laves phase. Thus, the grain boundary Laves phase is effective in suppressing the local deformation by preventing dislocation motion, and thereby increases the long-term creep rupture strength. This novel creep strengthening mechanism was proposed as “grain boundary precipitation strengthening mechanism” (GBPS).


Author(s):  
Kyungmok Kim

In this article, a creep–rupture model of aluminum alloys is developed using a time-dependent cohesive zone law. For long-term creep rupture, a time jump strategy is used in a cohesive zone law. Stress–rupture scatter of aluminum alloy 4032-T6 is fitted with a power law form. Then, change in the slope of a stress-rupture line is identified on a log–log scale. Implicit finite element analysis is employed with a model containing a cohesive zone. Stress–rupture curves at various given temperatures are calculated and compared with experimental ones. Results show that a proposed method allows predicting creep–rupture life of aluminum alloys.


Sign in / Sign up

Export Citation Format

Share Document