scholarly journals Long-term bending properties of cross-laminated timber made from Japanese larch under constant environment

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Ryuya Takanashi ◽  
Yoshinori Ohashi ◽  
Wataru Ishihara ◽  
Kazushige Matsumoto

AbstractCross-laminated timber (CLT) has been used extensively in timber construction. CLT panels are typically used in roofs and floors that carry a continuous load, and it is important to examine the long-term loading capacity of CLT. However, studies that focus on the long-term loading capacity of CLT are limited. To this end, we conducted long-term out-of-plane bending tests on seven-layer CLT made from Japanese larch (Larix kaempferi) under constant environmental conditions, investigated creep performance and duration of load, and experimentally analyzed creep rupture behavior. The mean estimated relative creep after 50 years was 1.49. The sample showed a satisfactory resistance to creep as a building material. The duration of load of most of the specimens in this study was shorter than the conventional value of small clear wood specimens. Specimens had a lower duration of load capacity than solid lumber. According to the results of survival analysis, a loading level of 70% or more caused the initial failure of specimens. Creep rupture of most of the specimens occurred at less deflection than displacement at failure in the short-term loading test. Additional studies focusing on the effects of finger joints, transverse layers, and width of a specimen on creep rupture behavior are suggested.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 524
Author(s):  
Junhua Xu ◽  
Shuangbao Zhang ◽  
Guofang Wu ◽  
Yingchun Gong ◽  
Haiqing Ren

With the increasing popularity of cross-laminated timber (CLT) constructions around the world, there have been attempts to produce CLT using local wood species in different countries, such as Japanese larch (Larix kaempferi (Lamb.) Carr.) in China. Thus, the need to investigate the connection performance also increases to support the design and construction of CLT buildings using local wood species. In this study, the withdrawal properties of three different types of self-tapping screws (STS), with a diameter of 6 mm, 8 mm, and 11 mm, were tested with Japanese larch CLT. The results revealed that the withdrawal strength of STS increased with increasing density and effective length, but decreased with an increasing diameter. With a density increment of 0.05 g/cm3, the withdrawal strength increased by an average of 9.4%. With an effective length increment of 24 mm, the withdrawal strength increased by an average of 1.4%. An empirical regression model was adopted to predict the withdrawal strength of Japanese larch CLT based on the results, which can be used for potential engineering design of CLT connections using STS.


Author(s):  
M. Render ◽  
M. L. Santella ◽  
X. Chen ◽  
P. F. Tortorelli ◽  
V. Cedro

Author(s):  
M. Render ◽  
M. L. Santella ◽  
X. Chen ◽  
P. F. Tortorelli ◽  
V. Cedro

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 884
Author(s):  
Shufen Chen ◽  
Wataru Ishizuka ◽  
Toshihiko Hara ◽  
Susumu Goto

Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Pavlina Mateckova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

High-performance concrete (HPC) is subjected to wide attention in current research. Many research tasks are focused on laboratory testing of concrete mechanical properties with specific raw materials, where a mixture is prepared in a relatively small amount in ideal conditions. The wider utilization of HPC is connected, among other things, with its utilization in the construction industry. The paper presents two variants of HPC which were developed by modification of ordinary concrete used by a precast company for pretensioned bridge beams. The presented variants were produced in industrial conditions using common raw materials. Testing and comparison of basic mechanical properties are complemented with specialized tests of the resistance to chloride penetration. Tentative expenses for normal strength concrete (NSC) and HPC are compared. The research program was accomplished with a loading test of model experimental pretensioned beams with a length of 7 m made of ordinarily used concrete and one variant of HPC. The aim of the loading test was to determine the load–deformation diagrams and verify the design code load capacity calculation method. Overall, the article summarizes the possible benefits of using HPC compared to conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document