Microstructure and mechanisms of cyclic deformation in aluminum single crystals at 77 K: Part II. Edge dislocation dipole heights

1999 ◽  
Vol 30 (13) ◽  
pp. 777-779 ◽  
Author(s):  
M. E. Kassner ◽  
M. A. Wall
Author(s):  
E. L. Thomas ◽  
S. L. Sass

In polyethylene single crystals pairs of black and white lines spaced 700-3,000Å apart, parallel to the [100] and [010] directions, have been identified as microsector boundaries. A microsector is formed when the plane of chain folding changes over a small distance within a polymer crystal. In order for the different types of folds to accommodate at the boundary between the 2 fold domains, a staggering along the chain direction and a rotation of the chains in the plane of the boundary occurs. The black-white contrast from a microsector boundary can be explained in terms of these chain rotations. We demonstrate that microsectors can terminate within the crystal and interpret the observed terminal strain contrast in terms of a screw dislocation dipole model.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1009
Author(s):  
Yutaka Ohno ◽  
Yuta Kubouchi ◽  
Hideto Yoshida ◽  
Toshio Kochiya ◽  
Tomio Kajigaya

The origin of twinning during the Czochralski (CZ) growth of 36°-RY lithium tantalate (LiTaO3) single crystals is examined, and it is shown that lineages composed of dislocation arrays act as an initiation site for twinning. Two types of lineages expand roughly along three different {12¯10} planes and two different {11¯00} planes. The former lineages and some latter lineages are composed of two types of mixed-dislocations with different Burgers vectors, while the other lineages are composed of only one type of edge-dislocation. All the dislocations have the Burgers vector of ⟨12¯10⟩ type with the compression side at the +Z side. Twin lamellae on {101¯2} are generated at a lineage during the CZ growth. We have hypothesized that dislocations in the lineage with b = 1/3⟨12¯10⟩ change their extension direction along a slip plane of {101¯2}, and they dissociate into pairs of partial dislocations with b = 1/6⟨22¯01⟩and 1/6⟨02¯21¯⟩ forming twin lamellae on {101¯2}.


Sign in / Sign up

Export Citation Format

Share Document