Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol–Gel Approach

2016 ◽  
Vol 46 (1) ◽  
pp. 158-166 ◽  
Author(s):  
Le Dien Than ◽  
Ngo Sy Luong ◽  
Vu Dinh Ngo ◽  
Nguyen Manh Tien ◽  
Ta Ngoc Dung ◽  
...  
2004 ◽  
Vol 108 (50) ◽  
pp. 19384-19387 ◽  
Author(s):  
Shanmugasundaram Sakthivel ◽  
Marcin Janczarek ◽  
Horst Kisch

2021 ◽  
Vol 33 (4) ◽  
pp. 853-858
Author(s):  
R. Girija ◽  
S. Stella Mary ◽  
G. Balakrishnan

The pure and nitrogen doped titanium oxide (TiO2) nanocrystallites were synthesized using sol-gel technique. The synthesized nanoparticles were characterized to examine the microstructural, optical and photocatalytic properties. The XRD studies of pure and doped TiO2 showed the formation of polycrystalline tetragonal structure with anatase phase. The crystallite sizes were calculated and found to be 17 and 15 nm for the pure and N-doped TiO2, respectively. FTIR studies indicated that the N-doped TiO2 bands are stronger compared with pure TiO2, indicating the more hydroxyl groups. FESEM studies showed the uniform formation of TiO2 nanocrystallites and spherical in shape with agglomeration. The photoluminescence spectra of the samples show emission peaks, indicating the band to band shift having the energy gap of 2.9 eV. The photocatalytic performance of the nanocatalyst was studied using methylene blue dye under visible light irradiation for 90 min. The photocatalytic efficiency of 66.9% and 85.8% is obtained for the pure and N-doped TiO2, respectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 6994-7000

This research study aims at fabrication of fine size nitrogen doped TiO2 nanofiber using electrospinning method and evaluation of the performance of TiO2 in a photovoltaic cell under visible light irradiation. Undoped and N doped TiO2 nanoparticles were synthesized by sol gel method where titanium isopropoxide was used as the source of TiO2 and ammonium nitrate was used as the source of N dopant. TiO2 /PVA composite material was prepared by stabilizing TiO2 particle in to 10 wt % of PVA (aq) solution in order to prepare thin film that can be coated on photovoltaic (PV) cells. Coating of solid thin film PV cells by TiO2 /PVA nanofibers was conducted using electrospinning and doctor blade method. In both systems, doping the TiO2 with nitrogen improved its optical properties which it successfully lowered the band gap energy from 3.14 to 2.76 eV and shifted its optical response to the visible light region. The presence of O-H stretching vibration, O-H bending and vibration of the N-Ti bond contributed to an increased performance of the PV cells. The electrospun N-doped TiO2 produced better power output than doctor blade method coated PV cells with power of 0.040 and 0.026 mW, respectively.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 210
Author(s):  
Dong Liu ◽  
Chunling Li ◽  
Congyue Zhao ◽  
Er Nie ◽  
Jianqiao Wang ◽  
...  

TiO2 develops a higher efficiency when doping Bi into it by increasing the visible light absorption and inhibiting the recombination of photogenerated charges. Herein, a highly efficient Bi doped TiO2 photoanode was fabricated via a one-step modified sol-gel method and a screen-printing technique for the anode of photocatalytic fuel cell (PFC). A maximum degradation rate of 91.2% of Rhodamine B (RhB) and of 89% after being repeated 5 times with only 2% lost reflected an enhanced PFC performance and demonstrated an excellent stability under visible-light irradiation. The excellent degradation performance was attributed to the enhanced visible-light response and decreased electron-hole recombination rate. Meanwhile, an excellent linear correlation was observed between the efficient photocurrent of PFC and the chemical oxygen demand of solution when RhB is sufficient.


Sign in / Sign up

Export Citation Format

Share Document