Effect of In-Plane Biaxial Strain on the Dirac Cone in α-Graphyne and Band Gap in α-BNyne

2018 ◽  
Vol 47 (9) ◽  
pp. 5601-5606 ◽  
Author(s):  
Somayeh Behzad
Keyword(s):  
Band Gap ◽  
Author(s):  
Rui Tan ◽  
Qi Qi ◽  
Peng Wang ◽  
Yan-Qiang Cao ◽  
Rongrong Si ◽  
...  

Abstract α-Sn is a topologically nontrivial semimetal in its natural structure. Upon compressively strained in plane, it transforms into a topological insulator. But, up to now, a clear and systematic understanding of the topological surface mode of topological insulating α-Sn is still lacking. In the present work, first-principle simulations are employed to investigate the electronic structure evolution of Ge1-xSnx alloys aiming at understanding the band reordering, topological phase transition and topological surface mode of α-Sn in detail. Progressing from Ge to Sn with increasing Sn content in Ge1-xSnx, the conduction band inverts with the first valence band and then with the second valence band sequentially, rather than inverting with the latter directly. Correspondingly, a topologically nontrivial surface mode arises in the first inverted band gap. Meanwhile, a fragile Dirac cone appears in the second inverted band gap as a result of the reorganization of the topological surface mode caused by the first valence band. The reorganization of the topological surface mode in α-Sn is very similar to the HgTe case. The findings of the present work are helpful for understanding and utilizing of the topological surface mode of α-Sn.


RSC Advances ◽  
2019 ◽  
Vol 9 (72) ◽  
pp. 42245-42251
Author(s):  
Haoran Tu ◽  
Jing Zhang ◽  
Zexuan Guo ◽  
Chunyan Xu

Hydrogenation can open the band gap of 2D tetragonal silicene, α-SiH is semiconductors with a direct band gap of 2.436 eV whereas β-SiH is indirect band gap of 2.286 eV. The band gap of α-SiH, β-SiH and γ-SiH can be modulated via biaxial strain.


2008 ◽  
Vol 17 (6) ◽  
pp. 2245-2250 ◽  
Author(s):  
Xu Hong-Yan ◽  
Jian Ao-Qun ◽  
Xue Chen-Yang ◽  
Chen Yang ◽  
Zhang Bin-Zhen ◽  
...  

2014 ◽  
Vol 16 (44) ◽  
pp. 24466-24472 ◽  
Author(s):  
Pin Xiao ◽  
Xiao-Li Fan ◽  
Li-Min Liu ◽  
Woon-Ming Lau

The band gap increases with increasing tensile strain to its maximum value at 6% strain and then decreases.


2001 ◽  
Vol 78 (2) ◽  
pp. 189-191 ◽  
Author(s):  
A. F. Wright ◽  
K. Leung ◽  
M. van Schilfgaarde

2015 ◽  
Vol 629 ◽  
pp. 43-48 ◽  
Author(s):  
Pin Xiao ◽  
Xiao-Li Fan ◽  
Han Zhang ◽  
Xiaoliang Fang ◽  
Li-Min Liu

Author(s):  
L. S. Taura ◽  
Isah Abdulmalik ◽  
A. S. Gidado ◽  
Abdullahi Lawal

Stanene is a 2D hexagonal layer of tin with exceptional electronic and optical properties. However, the semiconductor applications of stanene are limited due to its zero band-gap. However, doping stanene could lead to a band gap opening, which could be a promising material for electronic and optical applications. In this work, optimized structure, electronic band structure, real and imaginary parts of the frequency-dependent dielectric function, electron loss function, and refractive index of stanene substitutionally doped with alkaline earth metal (beryllium) were analyzed using density functional theory (DFT) calculations as implemented in the quantum espresso and yambo suites. A pure stanene has a zero band gap energy, but with the inclusion of spin-orbit coupling in the electronic calculation of pure stanene, the band-gap is observed to open up by 0.1eV. Doping stanene with beryllium opens the band-gap and shifts the Dirac cone from the Fermi level, the band gap opens by 0.25eV, 0.55eV, and 0.8eV when the concentration of Beryllium is 12.5%, 25%, and 37.5% respectively. The Dirac cone vanished when the concentration of the dopant was increased to 50%.  The Fermi level is shifted towards the valence band edge indicating a p-type material. The material absorption shows that SnBe absorption ranges in the visible to the ultraviolet region, The refractive index in stanene doped beryllium (SnBe) was found to be higher than that of pristine stanene, the highest refractive index was 9.2 at SnBe25%. In a nutshell, the results indicate that stanene can be a good material for electronic and optical applications if doped with beryllium.


2018 ◽  
Vol 787 ◽  
pp. 25-30
Author(s):  
Lei Liu ◽  
Yan Ju Ji ◽  
Yi Fan Liu

The effect of strain on the band structure of the GeH monolayer has been investigated by first-principles calculations based on density functional theory. The results show that the change of the band gap under the zigzag strain, the armchair strain and the biaxial strain is nonlinear. The effect of the biaxial strain on the band gap is the most obvious. In addition, the changes of energy under the three kinds of strain are asymmetric and the biaxial strain make the energy change the most. This work has significant implication of strain to tune optical catalytic properties of GeH monolayer.


2018 ◽  
Vol 122 (27) ◽  
pp. 15297-15303 ◽  
Author(s):  
Byung-Hyun Kim ◽  
Mina Park ◽  
Gyubong Kim ◽  
Kersti Hermansson ◽  
Peter Broqvist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document