scholarly journals Combined Experimental and TDDFT-DFT Computation, Characterization, and Optical Properties for Synthesis of Keto-Bromothymol Blue Dye Thin Film as Optoelectronic Devices

Author(s):  
Ahmed A. Al-Hossainy
2015 ◽  
Vol 11 (2) ◽  
pp. 3017-3022
Author(s):  
Gurban Akhmedov

Results of researches show, that film p-n the structures received by a method of discrete thermal evaporation in a uniform work cycle, are suitable for use in low-voltage devices.  As a result of work are received p-n heterojunctions in thin-film execution, described by high values of differential resistance. Show that, thermo endurance - T0 maybe using as characteristic of thermo endurance of optic materials. If heating flow, destruction temperature and internal surface temperature is measured during test, it is possible to determine value T0 and other necessity characteristics. As a result of the taking test was lead to comparison evaluation of considered materials. Working range of heating flow and up level heating embark have been determined.


Author(s):  
Mohamed H. Abdel‐Aziz ◽  
Mohammed Zwawi ◽  
Ahmed F. Al‐Hossainy ◽  
Mohamed Sh. Zoromba

2021 ◽  
Vol 528 ◽  
pp. 167803
Author(s):  
Sergey Lyaschenko ◽  
Olga Maximova ◽  
Dmitriy Shevtsov ◽  
Sergey Varnakov ◽  
Ivan Tarasov ◽  
...  

2020 ◽  
Author(s):  
Mangalika Sinha ◽  
R. K. Gupta ◽  
P. Dasilva ◽  
P. Mercere ◽  
Mohammed H. Modi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document