Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices

2008 ◽  
Vol 17 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Jun Akedo
2018 ◽  
Vol 11 (02) ◽  
pp. 1850022 ◽  
Author(s):  
Nico Leupold ◽  
Michael Schubert ◽  
Jaroslaw Kita ◽  
Ralf Moos

The aerosol deposition method (ADM) is a novel coating technique that allows to fabricate dense and nanocrystalline ceramic films at room temperature. To investigate the dielectric properties of aerosol deposited alumina films at high temperatures and the influence of annealing on them, the temperature was increased in steps of 100[Formula: see text]C from 200[Formula: see text]C to 900[Formula: see text]C and subsequently cooled down stepwise again. At each step, the dielectric properties were measured by impedance spectroscopy between 50[Formula: see text]mHz and 200[Formula: see text]kHz. During the heating steps, the relative permittivity and also the loss tangent showed a disordered behavior with various maxima in the loss tangent. After reaching 900[Formula: see text]C, during cooling, the behavior was more ordered, and the loss tangent exhibited only one maximum that appeared at lower frequencies. Overall, the annealing reduces the loss tangent at low frequencies and low temperatures. The origin of this behavior could lie in the annealing of defects, which are incorporated into the layer when the particles hit the surface of the substrate and crack while being deposited via ADM following the room temperature impact consolidation mechanism (RTIC).


2011 ◽  
Vol 485 ◽  
pp. 183-186 ◽  
Author(s):  
Tsutomu Furuta ◽  
Saki Hatta ◽  
Yoichi Kigoshi ◽  
Takuya Hoshina ◽  
Hiroaki Takeda ◽  
...  

Freestanding BaTiO3 ceramics films were fabricated using the aerosol deposition (AD) method and the size effect of nanograined BaTiO3 ceramics was demonstrated. Dense BaTiO3 thick film fabricated by the AD method was crystallized and detached from substrate by an annealing treatment at 600 °C, and then the grain size was controlled by a reannealing treatment at various temperatures. As a result, freestanding BaTiO3 thick films with various grain sizes from 24 to 170 nm were successfully obtained. Polarization–electric field (P–E) measurement revealed that BaTiO3 ceramics with grain sizes of more than 58 nm showed ferroelectricity, whereas BaTiO3 ceramics with an average grain size of 24 nm showed paraelectricity at room temperature. Dielectric measurement indicated that the permittivity decreased with decreasing grain size in the range of 170 to 24 nm.


2004 ◽  
Vol 449-452 ◽  
pp. 43-48 ◽  
Author(s):  
Jun Akedo

Aerosol deposition method (ADM) for shock-consolidation of fine ceramics powder to form dense and hard layers is reported. Submicron ceramic particles were accelerated by gas flow in the nozzle up to velocity of several hundred m/s. During interaction with substrate, these particles formed thick (10 ~ 100 µm), dense, uniform and hard ceramics layers. Depositions were fulfilled at room temperature. Every layer has polycrystalline structure with nano-meter order scale.􀀂 The results of fabrications, microstructure, mechanical and electrical properties of oxides (α-Al2O3; Pb(Zr0.52,Ti0.48)O3 etc.) and non-oxides materials are presented.


2021 ◽  
Vol MA2021-01 (56) ◽  
pp. 1521-1521
Author(s):  
Ralf Moos ◽  
Murat Bektas ◽  
Gunter Hagen ◽  
Jaroslaw Kita ◽  
Daniela Schoenauer-Kamin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document