Plasma Sprayed Dense MgO-Y2O3 Nanocomposite Coatings Using Sol-Gel Combustion Synthesized Powder

2010 ◽  
Vol 19 (5) ◽  
pp. 873-878 ◽  
Author(s):  
Jiwen Wang ◽  
Eric H. Jordan ◽  
Maurice Gell
2021 ◽  
pp. 130108
Author(s):  
Subhashree Praharaj ◽  
Senthil Kumar Venkatraman ◽  
R. Vasantharaman ◽  
Sasikumar Swamiappan

2009 ◽  
Vol 3 (1-2) ◽  
pp. 73-78 ◽  
Author(s):  
Elisa Mercadelli ◽  
Alessandra Sanson ◽  
Claudio Capiani ◽  
Luisa Costa ◽  
Carmen Galassi

BNBT (0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3) nanopowders were prepared starting from an aqueous solution of inorganic salts (barium acetate, bismuth nitrate, sodium nitrate and titanium isopropoxide) either by the citrate- nitrate sol-gel combustion (SGC) or by spray drying (SD). Their chemical and microstructural properties were compared with the ones of the same system obtained by mechanical mixing of oxides (SSCO). The SD and SGC powders require temperatures 150 and 300?C lower than SSCO powder to form the perovskite phase. The chemical and physical properties of the obtained powders strongly depend on the considered chemical route. Therefore the subsequent sintering step and consequently the microstructure of the obtained ceramics differ significantly. The microstructures as well the piezoelectric properties of the sintered SGC, SD, SSCO samples are investigated and a critical comparison is presented. .


2014 ◽  
Vol 185 ◽  
pp. 86-91 ◽  
Author(s):  
Alexandre R. Bueno ◽  
Renata F.M. Oman ◽  
Paula M. Jardim ◽  
Nicolás A. Rey ◽  
Roberto R. de Avillez

2013 ◽  
Vol 48 (11) ◽  
pp. 4449-4453 ◽  
Author(s):  
Wangchang Li ◽  
Xiaojing Qiao ◽  
Mingyu Li ◽  
Ting Liu ◽  
H.X. Peng

2018 ◽  
Vol 526 (1) ◽  
pp. 187-192 ◽  
Author(s):  
S. B. Bankar ◽  
N. S. Meshram ◽  
N. N. Sarkar ◽  
H. S. Ahamad ◽  
S. J. Dhobale ◽  
...  

2019 ◽  
Vol 33 (10) ◽  
pp. 1950081 ◽  
Author(s):  
Madeeha Riaz ◽  
Rehana Zia ◽  
Snudia Aslam ◽  
Alliya Qamar ◽  
Tousif Hussain ◽  
...  

In this paper, low temperature, economical sol–gel combustion method was adopted to synthesize wollastonite ceramic. Calcium nitrate tetrahydrate and tetraethyl orthosilicate were taken as source for Ca and Si, while citric acid and nitric acid were used as chelating/combustion agents. The yielded powder calcined at 600[Formula: see text]C for 4 h was characterized by FTIR, XRD and SEM techniques. Results showed that the citrate combustion method was the most efficient method to prepare wollastonite at low temperature. Moreover, in vitro bioactivity test performed in simulated body fluid (SBF) showed good bioactivity of synthesized wollastonite ceramics.


Sign in / Sign up

Export Citation Format

Share Document