Pressure Optimization and Failure Prediction for Deep Drawing Process of Sheet Metal Products: A Case Study

2018 ◽  
Vol 18 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Siddharaj V. Kumbhar
Author(s):  
Pedro de Jesu´s Garci´a Zugasti ◽  
Hugo Iva´n Medelli´n Castillo ◽  
Dirk Frederik de Lange

The deep drawing manufacturing process of sheet metal parts with complex shape has increased recently in applications such as in the automotive industry and the household appliances. The trial and error methods commonly used in defining the process parameters, cause high costs and large development times. The computer assisted analysis and simulations are being used more frequently to reduce the cost and development time of a product. The process parameters can be modified and evaluated using these computer simulations before the production is carried out. Therefore the defects of a part can be identified and eliminated, if possible, without the need of the traditional trial and error methods. This paper presents a case study of an industrial component that presented defects (wrinkles at the corners) in its deep drawing process. To eliminate these defects a drawbead was proposed and its optimal location was established using an optimization procedure based on finite element method (FEM). The FEM simulations were validated by measuring the thickness of the fabricated part. To evaluate the elimination of the wrinkle, the thickness of the sheet metal at the critical area was measured in the FEM simulation and compared with the thickness profile before and after the addition of the drawbeads. The results have shown that the design strategy based on FEM can be effectively used as a design tool to eliminate part defects in rectangular deep drawing process.


2014 ◽  
Vol 53 ◽  
pp. 797-808 ◽  
Author(s):  
H. Zein ◽  
M. El Sherbiny ◽  
M. Abd-Rabou ◽  
M. El shazly

2019 ◽  
Vol 153 ◽  
pp. 110-126
Author(s):  
Vamsi Krishna Balla ◽  
Laurens Coox ◽  
Elke Deckers ◽  
Francesco Greco ◽  
Bert Pluymers ◽  
...  

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


2011 ◽  
Vol 88-89 ◽  
pp. 638-641 ◽  
Author(s):  
Lei Chen

Earing is often undesirable in the production of deep drawn containers because it results in a nonuniform cup height. A finite element model for earring analysis is developed considering only the flange area of the sheet. It was found that the draw-in depth of the flange increases with the increase of the r value, and it remains invariable when r value is larger than 2. With the increase of the r value, the max thickness decreases and the min thickness increases. If △r>0, four earings are formed. If △r =0, the material characteristics in all the planar directions are same. The flange uniformly flows into the die cavity, no earing is formed. If △r<0, four earings are formed. The earing distribution is dominated by r0, r45 and r90. Both r and △r have much effect on the earing distribution.


Sign in / Sign up

Export Citation Format

Share Document