Numerical Investigation of Significant Process Parameters in a Tempered Deep Drawing Process of Magnesium Sheet Metal

Author(s):  
S. Walzer ◽  
M. Liewald
2020 ◽  
Vol 977 ◽  
pp. 139-147
Author(s):  
Jaber Abu Qudeiri ◽  
Aiman Ziout ◽  
Muneir Alsayyed ◽  
Ammar Alzarooni ◽  
Faris Safieh ◽  
...  

Deep drawing process is one of the important processes in sheet metal forming. One of the challenge that faces the deep drawing process is selecting the optimal values of process parameters for the deep drawing process. In order to find the optimum values of these parameters, it is necessary to study their influence on the deformation behaviour of the sheet metal. This paper develops a simulation model for deep drawing process based on Simufact sheet metal forming module to study the effect process parameters on the deep-drawing characteristics. The study also obtained the distribution of strain on the drawn product. Three process parameters are considered in this study namely, punch radius, die radius and clearance, the effect of these process parameter on the required force as well as on the quality of the product are investigated.


Author(s):  
Pedro de Jesu´s Garci´a Zugasti ◽  
Hugo Iva´n Medelli´n Castillo ◽  
Dirk Frederik de Lange

The deep drawing manufacturing process of sheet metal parts with complex shape has increased recently in applications such as in the automotive industry and the household appliances. The trial and error methods commonly used in defining the process parameters, cause high costs and large development times. The computer assisted analysis and simulations are being used more frequently to reduce the cost and development time of a product. The process parameters can be modified and evaluated using these computer simulations before the production is carried out. Therefore the defects of a part can be identified and eliminated, if possible, without the need of the traditional trial and error methods. This paper presents a case study of an industrial component that presented defects (wrinkles at the corners) in its deep drawing process. To eliminate these defects a drawbead was proposed and its optimal location was established using an optimization procedure based on finite element method (FEM). The FEM simulations were validated by measuring the thickness of the fabricated part. To evaluate the elimination of the wrinkle, the thickness of the sheet metal at the critical area was measured in the FEM simulation and compared with the thickness profile before and after the addition of the drawbeads. The results have shown that the design strategy based on FEM can be effectively used as a design tool to eliminate part defects in rectangular deep drawing process.


2014 ◽  
Vol 53 ◽  
pp. 797-808 ◽  
Author(s):  
H. Zein ◽  
M. El Sherbiny ◽  
M. Abd-Rabou ◽  
M. El shazly

2019 ◽  
Vol 153 ◽  
pp. 110-126
Author(s):  
Vamsi Krishna Balla ◽  
Laurens Coox ◽  
Elke Deckers ◽  
Francesco Greco ◽  
Bert Pluymers ◽  
...  

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


Sign in / Sign up

Export Citation Format

Share Document