Solid-State Phase Equilibria of the Cu-S System: Thermodynamic Modeling

2018 ◽  
Vol 39 (6) ◽  
pp. 810-819 ◽  
Author(s):  
Peter Waldner
1989 ◽  
Vol 20 (5) ◽  
pp. 795-803 ◽  
Author(s):  
H. J. Fecht ◽  
M. X. Zhang ◽  
Y. A. Chang ◽  
J. H. Perepezko

Calphad ◽  
2012 ◽  
Vol 36 ◽  
pp. 8-15 ◽  
Author(s):  
Xuehui An ◽  
Qian Li ◽  
Jieyu Zhang ◽  
Shuanglin Chen ◽  
Ying Yang

RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 39762-39773 ◽  
Author(s):  
Yongfu Guo ◽  
Juan Deng ◽  
Junyan Zhu ◽  
Chao Zhou ◽  
Caiyun Zhou ◽  
...  

In order to improve the BET value and adsorption capacity of graphene oxide (GO), activated GO (GOKOH) was successfully prepared by high temperature solid state activation with KOH, and was used to remove the anionic dye orange IV from water.


2014 ◽  
Vol 66 (10) ◽  
pp. 1439-1450 ◽  
Author(s):  
Hamdy Abdelkader ◽  
Ossama Y Abdallah ◽  
Hesham Salem ◽  
Adam WG Alani ◽  
Raid G Alany

2019 ◽  
Vol 57 (2) ◽  
pp. 111-115
Author(s):  
Svetlana E. Pratskova ◽  
◽  
Evgenia S. Nechaeva ◽  

The thermodynamic properties of melts of the Na2O – CaO – Al2O3 system are of considerable interest for metallurgy, technology of ceramic materials, optical fibers. State diagrams CaO – Al2O3, Na2O – Al2O3 have been studied by many researchers and do not have the generally accepted version, and the system Na2O – CaO has not been specifically studied. In the work, thermodynamic modeling of the phase equilibria of the Na2O – CaO – Al2O3 system was carried out within the framework of the generalized theory of “regular” ionic solutions. Equations for the activities of the system components are derived. The energy parameters of the model are determined taking into account melting characteristics and experimental data. The state diagrams of binary systems are constructed using the calculated values of the Gibbs energies for the formation of sodium and calcium aluminates from the corresponding oxides. Using the regression equations of the temperature dependences of the energy parameters of binary melts of the Na2O – CaO – Al2O3 system, the molar mixing functions of the liquid solution раствора G_m^M, H_m^M, S_m^M and the excess thermodynamic functions G^E, H^E, S^E were calculated at 1500-1800 oC. Lime-alumina melts are stable at all temperatures, experiencing negative deviations from ideality. The Gibbs excess energy G^E is negative and in absolute value varies from 5 to 90 kJ/mol. With an increase in the concentration of Al2O3 in the melt and temperature, a tendency toward disorder is clearly manifested: the entropy of the melt mixing changes its sign from “minus” to “plus”. Na2O – Al2O3 melts are formed with an exothermic effect and ordering, and are also stable. They experience strong negative deviations (for G^E) from ideality. However, the situation changes at 55 mol. % Al2O3 and 1700-1800 oС melts of the system are unstable.


2002 ◽  
Vol 66 (6) ◽  
pp. 1043-1062 ◽  
Author(s):  
R. O. Sack ◽  
P. C. Goodell

Abstract The sulphide ores from the Julcani mining district (Peru) display many retrograde reactions that may be attributed to solid-state processes accompanying cooling. Fahlores [˜(Cu,Ag)10(Zn,Fe)2(Sb,As)4S13] from the Herminia mine exhibit pronounced downstream enrichments in molar Ag/(Ag+Cu) ratios that are strongly correlated with the abundance of PbS-AgSbS2-AgBiS2 phases. These correlations, discontinuous core to rim Sb/(Sb+As) enrichments in bournonites, and prominent reaction textures involving fahlores, bournonites and galenas provide strong evidence that the fahlores in these ores have been enriched in Ag by the Ag–Cu exchange reaction which occurred during cooling following mineralization of a PbS-AgSbS2-AgBiS2 galena and has been documented elsewhere. Secondary PbS-AgSbS2-AgBiS2 minerals aramayoite, bismuthian diaphorite [Pb2Ag3(Bi,Sb)3S8], and diaphorite were produced from primary galenas with cooling of ores with high Pb/Cu and Bi/Sb; pyrargyrite formed from the breakdown of the Ag10Zn2Sb4S13 component in the most Ag-rich fahlores, as an exsolution product of galena, and from replacement of aramayoite and galena with the evolution of semimetal sulphides. Based on mineral compositions, phase equilibria, a thermochemical database for sulphides and sulphosalts, and the reintegrated composition for primary grains of Ag-rich PbS-AgSbS2-AgBiS2 phases, we estimate that the primary temperature of hydrothermal mineralization was >320±10°C, that these reactions ceased to affect fahlore Ag/(Ag+Cu) ratios and Bi/(Bi+Sb) ratios of aramayoite and miargyrite after cooling through 220±10°C. Galenas, however, appear to have continued to adjust their compositions to reflect even lower temperatures by continued exsolution of semimetals and production a diverse suite of sulphosalts that occur in fine intergrowths with galena.


Sign in / Sign up

Export Citation Format

Share Document