scholarly journals Thermodynamics and Kinetics of High-Entropy Alloys

Author(s):  
Michael C. Gao ◽  
Raymundo Arróyave ◽  
John E. Morral ◽  
Ursula R. Kattner
2017 ◽  
Vol 38 (4) ◽  
pp. 351-352 ◽  
Author(s):  
M. C. Gao ◽  
J.-C. Zhao ◽  
J. E. Morral

Author(s):  
S. Schellert ◽  
B. Gorr ◽  
H.- J. Christ ◽  
C. Pritzel ◽  
S. Laube ◽  
...  

AbstractIn this study, the effect of Al on the high temperature oxidation of Al-containing refractory high entropy alloys (RHEAs) Ta-Mo-Cr-Ti-xAl (x = 5; 10; 15; 20 at%) was examined. Oxidation experiments were performed in air for 24 h at 1200 °C. The oxidation kinetics of the alloy with 5 at% Al is notably affected by the formation of gaseous MoO3 and CrO3, while continuous mass gain was detected for alloys with the higher Al concentrations. The alloys with 15 and 20 at% Al form relatively thin oxide scales and a zone of internal corrosion due to the formation of dense CrTaO4 scales at the interface oxide/substrate. The alloys with 5 and 10 at% Al exhibit, on the contrary, thick and porous oxide scales because of fast growing Ta2O5. The positive influence of Al on the formation of Cr2O3 followed by the growth of CrTaO4 to yield a compact scale is explained by getter and nucleation effects.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Feng He ◽  
Zhijun Wang ◽  
Yiyan Li ◽  
Qingfeng Wu ◽  
Junjie Li ◽  
...  

Abstract The comprehensive performance of high entropy alloys (HEAs) depends on the phase selection significantly. However, up to now, investigations of the phase selection in HEAs mainly focused on the thermodynamic equilibrium phase, while kinetic ways of tailoring the phases in HEAs are seldom considered. In HEAs, the kinetics of sluggish diffusion and the numerous possible phases make the kinetics of phase transformation more complex and intriguing. Here, the kinetic effect in CoCrFeNiTi0.4 HEAs was investigated to reveal the possibility of controlling phase selection via kinetic ways for HEAs. The σ, γ′ and R phases in the CoCrFeNiTi0.4 HEA can be controlled under different cooling rate both in solidification and solid transformation. The theoretical analyses revealed the kinetic effect on phase selection. The method proposed here, tailoring the phases with different kinetic ways, could be used to prepare promising HEAs with very rich composition design.


2018 ◽  
Vol 161 ◽  
pp. 338-351 ◽  
Author(s):  
G. Laplanche ◽  
S. Berglund ◽  
C. Reinhart ◽  
A. Kostka ◽  
F. Fox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document