Potential seed germination-enhancing plant growth-promoting rhizobacteria for restoration of Pinus chiapensis ecosystems

Author(s):  
Cristina Domínguez-Castillo ◽  
Julia María Alatorre-Cruz ◽  
Dolores Castañeda-Antonio ◽  
José Antonio Munive ◽  
Xianwu Guo ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


2016 ◽  
Vol 3 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Keshob Chandra Das ◽  
Sabina Yesmin ◽  
Syfullah Shahriar

Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. Ten isolates of bacteria designated as SS01, SS02, SS03, SS04, SS05, SS06, SS07, SS08, SS09 and SS10 were successfully isolated and morphologically and biochemically characterized. Subsequently to investigate the effect of PGPR isolates on the growth of chickpea, a pot culture experiment was conducted in 2013 at National Institute Biotechnology, Bangladesh net house. Prior to seeds grown in plastic pots, seeds were treated with PGPR isolates and seedlings were harvested after 21 days of inoculation. All the isolates were gram negative in reaction, catalase positive, produced indole acetic acid (IAA) as well as performed phosphate solubilization, able to degrade cellulose and have the adaptability in wide range of temperature and showed positive growth pattern in medium. Most of isolates resulted in a significant increasing of shoot length, root length and dry matter production of shoot and root of chickpea seedlings. Application of PGPR isolates significantly improves the percentage of seed germination under saline conditions. The present study, therefore suggested that the use of PGPR isolates SS04, SS10 and SS08 as inoculants biofertilizers might be beneficial for chickpea cultivation in saline conditionRes. Agric., Livest. Fish.3(1): 105-113, April 2016


2007 ◽  
Vol 55 (2) ◽  
pp. 243-249 ◽  
Author(s):  
S. Lokesh ◽  
B. Bharath ◽  
V. Raghavendra ◽  
M. Govindappa

In the present study, seven isolates of plant growth-promoting rhizobacteria were used for seed treatment to suppress seedling diseases caused by fungi. Their effect on the seed germination and seedling vigour of watermelon was also studied. Among them INR-7 was able to inhibit a broad range of fungal species, GBO3 and IPC-11 were found to be effective against Fusarium spp. and Didymella bryoniae , while isolates SE-34 and T-4 were effective against Myrothecium species and also reduced the development of symptoms on the seedlings. Isolates GBO3, IPC-11 and INR-7 increased seed germination and seedling vigour to the greatest extent.


2013 ◽  
Vol 7 (3) ◽  
pp. 70-77 ◽  
Author(s):  
Gopalu Karunakaran ◽  
Rangaraj Suriyaprabha ◽  
Palanisamy Manivasakan ◽  
Rathinam Yuvakkumar ◽  
Venkatachalam Rajendran ◽  
...  

2013 ◽  
Vol 04 (05) ◽  
pp. 1013-1021 ◽  
Author(s):  
Pacôme A. Noumavo ◽  
Eméric Kochoni ◽  
Yédéou O. Didagbé ◽  
Adolphe Adjanohoun ◽  
Marcellin Allagbé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document