scholarly journals The Effectiveness of Giving Plant PGPR Rhizosphere Bamboo on Cocoa Seeds Germination at The Nursery Level

2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.

2017 ◽  
Vol 1 (3) ◽  
pp. 105
Author(s):  
Sumiyati Tuhuteru ◽  
Endang Sulistyaningsih ◽  
Arif Wibowo

The marginal sandy coastal land should be utilized to maintain production level of shallot. But for increasing the productivity of sandy coastal land, in the shallot cultivation should be applied biological fertilizers, such as Plant Growth Promoting Rhizobacteria (PGPR). The purpose of this research was to obtain the most effective isolate of PGPR (Plant Growth Promoting Rhizobacteria) to the growth of three shallot cultivars in the sandy coastal land. The research had been conducted in August-November 2015 at Samas sandy coastal land, Bantul. The Factorial treatments were assigned in Randomized Complete Block Design with three blocks as replications. The first factor was shallot cultivars consisted of Crok, Tiron and Tuk-tuk, while the second factor was the PGPR suspension, i.e. control (without PGPR), PGPR isolates BP25.2 (Bacillus methylotrophicus), BP25.6 (Bacillus amyloliquofaciens), BP25.7 (Bacillus subtilis), BrSM 4 (Burkholderiacepacia), and BrSG 5 (Burkholderiaseminalis). The data of growth and yield were analyzed using ANOVA with α = 5%, then followed by DMRT α 5% . The result showed that Tiron cultivar was able to grow in sandy coastal land, proven from its good germination, high number of bulb, high fresh weight, and dry weight of bulb. Meanwhile, BP25.2 isolate was able to increase seed growth simultaneously of Tiron cultivar and BrSM 4 isolate was able to increase the chlorophyll content of Tuk-tuk cultivars.


2017 ◽  
Vol 32 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Marija Saric-Krsmanovic ◽  
Dragana Bozic ◽  
Ljiljana Radivojevic ◽  
Jelena Gajic-Umiljendic ◽  
Ljiljana Santric ◽  
...  

Several bacterial cultures: Bacillus licheniformis (MO1), B. pumilus (MO2), and B. amyloliquefaciens (MO3), isolated from manure; B. megatherium ZP6 (MO4) isolated from maize rhizosphere; Azotobacter chroococcum Ps1 (MO5) and Pseudomonas fluorescens (MO6), were used to test the influence of plant growth promoting rhizobacteria (PGPR) on seed germination and germination rate of field dodder (Cuscuta campestris Yunk.). Also, to examine the effect of host seeds on germination and initial growth of seedlings of field dodder plants in the dark and under white light, the seeds of four host plants were used (watermelon, red clover, alfalfa and sugar beet). Germinated seeds were counted daily over a ten-day period and the length of seedlings was measured on the final day. The results show that treatments MO3, MO4 and MO6 had inhibitory effects (15%, 65% and 52%, respectively), while treatments MO1, MO2 and MO5 had stimulating effects (3%, 3% and 19%, respectively) on seed germination of field dodder. The data for host seeds show that light was a significant initial factor (83-95%, control 95%) for stimulating seed germination of field dodder plants, apart from host presence (73-79%, control 80%).


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


2016 ◽  
Vol 3 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Keshob Chandra Das ◽  
Sabina Yesmin ◽  
Syfullah Shahriar

Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. Ten isolates of bacteria designated as SS01, SS02, SS03, SS04, SS05, SS06, SS07, SS08, SS09 and SS10 were successfully isolated and morphologically and biochemically characterized. Subsequently to investigate the effect of PGPR isolates on the growth of chickpea, a pot culture experiment was conducted in 2013 at National Institute Biotechnology, Bangladesh net house. Prior to seeds grown in plastic pots, seeds were treated with PGPR isolates and seedlings were harvested after 21 days of inoculation. All the isolates were gram negative in reaction, catalase positive, produced indole acetic acid (IAA) as well as performed phosphate solubilization, able to degrade cellulose and have the adaptability in wide range of temperature and showed positive growth pattern in medium. Most of isolates resulted in a significant increasing of shoot length, root length and dry matter production of shoot and root of chickpea seedlings. Application of PGPR isolates significantly improves the percentage of seed germination under saline conditions. The present study, therefore suggested that the use of PGPR isolates SS04, SS10 and SS08 as inoculants biofertilizers might be beneficial for chickpea cultivation in saline conditionRes. Agric., Livest. Fish.3(1): 105-113, April 2016


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Aghajan bahadori ◽  
Mohmmad Hossein GHarineh ◽  
Abdolmahdi Bakhshandeh ◽  
Naeimeh Enayatizamir ◽  
Alireza Shafeinia

This study was performed in order to investigate the effect of Plant growth-promoting rhizobacteria in reducing nitrogen and phosphorus Fertilizers Application in Sugarcane. The field experiment of this study was in the form of Split–block design with subplots in stips with four replications and three factors, including bacterial factor at four levels (control, Enterobacter cloaca, Pseudomonas putida and a combination of two types of bacteria), nitrogen factor at three levels (50, 75 and 100% recommended nitrogen for sugarcane (and phosphorus factor at three levels (50, 75 and 100% recommended phosphorus for sugarcane), was carried out in 2016-2017crop year in DC7-10 research farm of Dehkhoda sugarcane agro-industryin Ahvaz, in the southwest of Iran, on CP73-21 sugarcane variety. According to the analysis of variance tables, simple and interaction effects of the tested treatments, in the case of quantitative traits, including stalk yield, height, diameter, stalk density, percentage of nitrogen and phosphorus of leaves, chlorophyll content, LAI and HI in sugarcane were significant at the level of 1% probability. Comparison of means showed that the application of simultaneous application of growth-promoting bacteria along with the application of 75% recommended nitrogen and phosphorus for sugarcane, compared with the control treatment (application of 100% recommended nitrogen and phosphorus for sugarcane, without the use of bacteria), Was able to succeed in these traits 96.9%, 98.1%, 95.7%, 96.3%, 100.2% ,101.9%, 91.2% and 94.8%, respectively and Provide 21/9, 23/1, 20/7, 21/3, 25, 25, 16.2 and 19.8% of the nutrients of nitrogen and phosphorus for sugarcane, respectively, and is saved the same amount of nitrogen and phosphorus consumption for sugarcane. Also, regarding the sugarcane yield, the simultaneous application treatment of the tested bacteria along with the application of 100% recommended phosphorus and nitrogen for sugarcane, Compared to the control treatment


2019 ◽  
Vol 7 (2) ◽  
pp. 64
Author(s):  
Syafrullah Salman

This research aims to find out effect of combination dosage of PGPR (Plant Growth Promoting Rhizobacteria) and phonska fertilizer toward the growth and the yield of soybean. This experiment was carried out in the field using a combination randomized block design (RBD) with five repeating.The treatments gave were 100% PGPR fertilizer (8 grams / liter) (A), 100% PGPR fertilizer (8 grams / liter) + 50% phonska fertilizer (0.78 grams) (B), 50% PGPR fertilizer (4 grams / liter) + 100% phonska fertilizer (1.56 gram) (C), 50% PGPR fertilizer (4 gram / liter) + 50% phonska fertilizer (0.78 gram) (D) and 100% phonska fertilizer (1, 56 grams) (E).The results showed that the treatment of 50% PGPR fertilizer (4 grams / liter) + phonska fertilizer 100% (1.56 grams) (C) gave a significant effect on the variable root length and leaf area index (LAI).The treatment of 100% phonska fertilizer (1.56 grams) (E) gave a significant effect on the variable seed weight per plot.


Akta Agrosia ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 33-37
Author(s):  
Fera Ariska ◽  
Marlin Marlin ◽  
Widodo Widodo

Bawang dayak is the important medicinal plant that need to be developed in cultivation techniques and production. The use of Plant Growth Promoting Rhizobacteria (PGPR) recently known to be effective to increase plant growth and yield. The research aimed to determine the optimal concentration and immersion time of PGPR on the growth and yield of bawang dayak. The experiment was arrange in complete randomized block design (RCBD) consisting of two factors. The first factor is the concentration of PGPR with 4 levels namely K0 = 0 g L-1, K1 = 5 g L-1, K2 = 10 g L-1 and K3 = 15 g L-1.  The second factor is immersion time of seed, namely P1 = 10 minutes, P2 = 20 minutes, P3 = 30 minutes and P4 = 40 minutes.  The results showed that there was an interaction between concentration and immersion time of PGPR giving effect to the number of leaves and the number of tillers. The immersion time of PGPR for 10 minutes with a concentration of 15 g L-1produced the highest number of leaves (58 leaves) and produced the highest number of tillers (27.67 tillers).  The treatment of PGPR concentration or immersion time of PGPR singly did not affect all observed variables of growth and yield of bawang dayak.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


Sign in / Sign up

Export Citation Format

Share Document