scholarly journals Application of ion-exchange resin beads to produce magnetic adsorbents

2020 ◽  
Author(s):  
Emőke Sikora ◽  
Viktória Hajdu ◽  
Gábor Muránszky ◽  
Kitti Krisztina Katona ◽  
István Kocserha ◽  
...  

Abstract Heavy metal ions are among the most dangerous contaminants, which can cause serious health problems. In this work, ion-exchange resin beads were used as supports for magnetite (Fe3O4) synthesis to produce heavy metal adsorbents which can be easily separated by magnetic field. The first step of the magnetite preparation was the replacement of hydrogen ions with Fe2+ and Fe3+ ions on the sulfonic acid groups of the resin. In the second step, magnetite particle formation was induced by coprecipitating the iron ions with sodium hydroxide. The regeneration of the ion-exchange resin was also carried out by using sodium hydroxide. SEM images verified that relatively large magnetite crystal particles (diameter = 100–150 nm) were created. The ion-exchange effect of the prepared magnetic adsorbent was also confirmed by applying Cu2+, Ni2+, Pb2+ and Cd2+ ions in adsorption experiments.

2019 ◽  
Vol 129 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Ádám Prekob ◽  
Viktória Hajdu ◽  
Gábor Muránszky ◽  
István Kocserha ◽  
Béla Fiser ◽  
...  

Abstract Carbonized ion exchange resin beads were prepared as catalyst for gas phase hydrogenation processes. Amberlite IR 120 polystyrene based sulfonated ion exchange beads were carbonized at 900 °C. The process of carbonization was monitored by FTIR combined thermogravimetric analysis. During the carbonization formed sulfur dioxide, carbon dioxide and organic compounds. The carbon pearls were used as catalyst support for Pd nanoparticles. The catalyst was characterized by scanning electron microscopy and X-ray diffractometry. The diameters of the palladium nanoparticles on the catalyst surface were between 15 and 50 nm, but bigger aggregates were also detected. The catalyst was tested during the gas phased heterogeneous catalytic hydrogenation of 1-butene. The hydrogenation process was followed by FTIR measurements, 93% conversion was reached after 10 min.


1969 ◽  
Vol 47 (9) ◽  
pp. 1505-1506 ◽  
Author(s):  
H. Gee ◽  
R. I. Greyson

Dowex-1 ion exchange resin beads bind indoleacetate, naphthaleneacetate, and indoleproprionate ions and release them to plant tissue. We suggest this tool shows considerable potential in assessing the role of growth substances in morphogenesis. Some properties of IAA loaded beads are described.


1992 ◽  
Vol 26 (1-2) ◽  
pp. 189-196 ◽  
Author(s):  
C. N. Mazidji ◽  
B. Koopman ◽  
G. Bitton

A chelating resin (Chelex 50-100) and ion-exchange resin (Dowex 50W-X8) were evaluated for removal of heavy metals in toxicity fractionation. Microtox and β-galactosidase activity were employed as toxicity endpoints. The resins were packed into 4 raL glass Pasteur pipettes for use. Chelating resin provided complete removal of toxicity due to polyvalent heavy metal cations (Cd, Cu, Hg, Pb, Zn). Ion-exchange resin was ineffective in removing mercury toxicity. Neither resin provided complete removal of Ag+ toxicity. Toxicity of organic compounds was, at most, partially removed. Performance of the ion-exchange and chelating resins was insensitive to hardness and pH. Based on these results, chelating resin is recommended for heavy metal removal as part of a toxicity fractionation procedure.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Pamela B. Ramos ◽  
Néstor O. Fuentes ◽  
Vittorio Luca

ABSTRACTThe pyrolysis of ion exchange resin beads that are used for the purification of water in reactor primary- and secondary-cooling circuits can result in stable and leach resistant carbonaceous products. However, free flowing beads are less desirable waste forms for disposal in sub-surface or surface repositories than monolithic masses of low porosity. We have investigated the pyrolysis of polymeric resin – cation exchange resin composites to give mechanically robust and chemically durable monolithic carbonaceous waste forms that are suitable for repository disposition. Also investigated was the dependence of product properties on various processing parameters (temperature ramp and final temperature). As a first approach, epoxy resins were used for the preparation of monoliths since such resins cure at room temperature and result in a relatively high carbon yield. Carbonaceous monolithic products were prepared at 400, 500, 600, 700 and 800 °C using a temperature ramp of 2°C/min. The products were maintained at the chosen temperatures for a period of one hour. Mass losses, volume reduction, hardness and compressive strength were measured and mathematical functions are proposed to describe the measured values of these properties. The carbon monoliths were observed to be mechanically robust.


Sign in / Sign up

Export Citation Format

Share Document