Interaction of ectoine and hydroxyectoine with protein: fluorescence study

2021 ◽  
Author(s):  
Auguste Rasteniene ◽  
Ruta Gruskiene ◽  
Jolanta Sereikaite
Author(s):  
Stefan Dimov ◽  
Anelia Ts. Mavrova ◽  
Denitsa Yancheva ◽  
Biliana Nikolova ◽  
Iana Tsoneva

Aims: The purpose was the synthesis of some new thienopyrimidines derivative of 1,3-disubstituted benzimidazoles and the evaluation of their cytotoxicity towards MDA-MB-231 and MCF-7 cell lines as well 3T3 cells. Background: An overexpression or mutational activation of TK receptors EGFR and HER2/neu are characteristic for tumors. It has been found that some thieno[2,3-d]pyrimidines exhibit better inhibitory activity against epidermal growth factor receptor (EGFR/ErbB-2) tyrosine kinase in comparison to aminoquinazolines. Breast cancer activity towards MDAMB-231 and MCF-7 cell lines by inhibiting EGFR was revealed by a novel 2-arylbenzimidazole. This motivated the synthesis of new thienopyrimidines possessing benzimidazole fragment in order to evaluate their cytotoxicity to the above mentioned cell lines. Objective: The objectives were the design and synthesis of a novel series thieno[2,3-d]pyrimidines bearing biologically active moieties as 1,3-disubstituted-benzimidazole heterocycle structurally similar to diaryl ureas in order to evaluate their cytotoxicity against MDA-MB-231, MCF-7 breast cancer cell lines. Methods: N,N-disubstituted benzimidazole-2-one carbonitriles were synthesized by Aza-Michael addition and used as precursors to generate some of the new thieno[2,3-d]pyrimidines in acidic medium. The interaction of chloroethyl-2- thienopyrimidines and 2-amino-benzimidazole resp. benzimidazol-2-one nitriles under solid-liquid transfer catalysis conditions lead to obtaining of new thienopyrimidines. MTT assay for cells survival was performed in order to establish the cytotoxicity of the tested compounds. Fluorescence study was used to elucidate some aspect of mechanism. Results: The effect of nine of the synthesized compounds was investigated towards MDA-MB-231 and MCF-7 cells as well as to 3T3 cells. Thieno[2,3-d]pyirimidine-4-one 16 (IC50 – 0.058 μM) and 21 (IC50 – 0.029 μM) possess high cytotoxicity against MDA-MB-231 cells after 24h. The most toxic against breast cancer MCF-7 cells was compounds 21 (IC50 – 0.074 μM), revealing lower cytotoxicity towards mouse fibroblast 3T3 cells with IC50 – 0.20 μM. SAR analisys was performed. Fluorescence study of the treatment of MDA-MB cells with compound 21 was carried out in order to clarify some aspects of mechanism of action. Conclusion: The relationship between cytotoxicity of compounds 14 and 20 against MCF-7 and 3T3 cells can suggest a similar mechanism of action. The antitumor potential of the tested compounds proves the necessity for further investigation to estimate the exact inhibition pathway in the cellular processes. The fluorescence study of the treatment of MDA-MB cells with compound 21 showed a rapid process of apoptosis.


1983 ◽  
Vol 61 (6) ◽  
pp. 421-427 ◽  
Author(s):  
James R. Lepock ◽  
Kwan-Hon Cheng ◽  
Hisham Al-Qysi ◽  
Jack Kruuv

Exposure of mammalian cells to hyperthermic temperatures (ca. 41–45 °C) appears to act as a direct or triggering effect to produce some later response such as cell death, thermotolerance, or heat-shock protein synthesis. The high activation energy of cell killing indicates that the direct effect of hyperthermia might be a thermotropic transition in some cellular component, for this particular response. Both hyperthermic survival and growth data imply that the temperature for the onset of hyperthermic cell killing is 40–41.5 °C for Chinese hamster lung V79 cells. Studies using the electron spin resonance label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide and the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene show the existence of lipid transitions at approximately 7–8 and 23–36 °C (or a broad transition between these temperatures) in mitochondria and whole cell homogenates, that correlate well with changes in growth and hypothermic killing. No lipid transition was detected near 40–41.5 °C that could correlate with hyperthermic killing in either mitochondrial or plasma membranes, but measurements of intrinsic protein fluorescence and protein fluorophore to trans-paranaric acid energy transfer demonstrate the existence of an irreversible transition in protein structure or arrangement above ca. 40 °C in both mitochondrial and plasma membranes. This transition is due to protein rearrangement and (or) unfolding such that there is increased exposure of protein tryptophan and tyrosine residues to polar groups and to paranaric acid. The strength of the transition implies that a significant fraction of total membrane protein is involved in this transition, which may be analogous to the heat-induced denaturation of water-soluble proteins. This alteration in membrane structure above ca. 40 °C could cause many of the observed changes in plasma membrane and mitochondrial function, which may further be involved in cellular responses to hyperthermia.


2021 ◽  
pp. 104993
Author(s):  
Mayte A. Martínez-Aguirre ◽  
Marcos Flores Alamo ◽  
Karla Elisa Trejo-Huizar ◽  
Anatoly K. Yatsimirsky

Sign in / Sign up

Export Citation Format

Share Document