Effect of acupuncture plus mild hypothermia on MAPK/ERK pathway of brain tissues in rats with cerebral ischemia-reperfusion injury

2016 ◽  
Vol 14 (5) ◽  
pp. 311-319 ◽  
Author(s):  
Ya-ping Lin ◽  
Qin Liu ◽  
Chu-tao Chen ◽  
Wen Chen ◽  
Heng Xiao ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Bei-lei Zhu ◽  
Chen-long Xie ◽  
Ning-ning Hu ◽  
Xin-bo Zhu ◽  
Chun-feng Liu

Background and Purpose. The aim of this study was to explore the role of DL-3-n-butylphthalide (NBP) in cerebral ischemia-reperfusion injury (CIRI) mice model. The involvement of extracellular signal-regulated kinase (ERK) signaling pathway was also investigated. Methods. All mice were divided into five groups: sham-operated group, CIRI group, NBP pretreatment group, NBP treatment group, and NBP pretreatment + treatment group. The CIRI mice model was established by the use of the Pulsinelli four-vessel occlusion method. Pretreatment mice received NBP (90 mg/kg/d) three times a day within four days before reperfusion by gavage. Treatment mice received NBP (90 mg/kg/d) three times a day within five days after reperfusion by gavage. We detected the infarction area, the neurological severity, and the superoxide dismutase and malondialdehyde levels. Furthermore, we observed the expressions of GRASP65, phosphorylation of GRASP65 (pGRASP65), ERK, and phosphorylation of ERK (pERK) by the use of Western blotting. Results. The result showed that the ERK pathway was activated in response to CIRI. NBP decreases the expressions of pERK and pGRASP65 following CIRI. Additionally, NBP could decrease MDA and increase SOD level in brain tissues. Decreased infarct volume was also observed in the NBP group. Thereby, NBP inhibited the activation of the ERK pathway induced by CIRI and reduced the GRASP65 phosphorylation. Conclusions. The current finding suggested that NBP protected the cerebrum from CIRI mediated by inhibiting the ERK signaling pathway and subsequently reducing GRASP65 phosphorylation.


2021 ◽  
pp. 096032712199602
Author(s):  
P Li ◽  
Y Huang ◽  
Y Yang ◽  
X Huang

Purpose: Cerebral ischemia is the main cause of permanent adult disabilities worldwide. This study investigated the reparative effects and potential mechanisms of methylphenidate (MPH), a medication for the treatment of attention-deficit/hyperactivity disorder. Methods: In vitro oxygen-glucose deprivation/reperfusion (OGD/R) and in vivo cerebral ischemia-reperfusion models were established. Sprague-Dawley (SD) rats were randomly divided into four groups ( n = 20): Sham, Model, and MPH (0.5 and 1 mg/kg). Rats in MPH groups were treated with 0.5 or 1 mg/kg MPH via intraperitoneal injection for 7 days. Rats in the Sham and Model groups were treated with PBS during the same period. Cell viability was measured using MTT assay. Apoptosis was detected by Annexin V/PI staining. Protein expression was detected by Western blot. The volume of cerebral infarction was detected by triphenyltetrazolium chloride (TTC) staining. The DNA damage in ischemic brain tissues was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: MPH treatment significantly reduced OGD/R-induced cell damage, shown by the increased cell viability and decreased apoptotic rate. p-AMPK and p-ACC protein expression increased in the OGD/R model after MPH treatment. The addition of AMPK inhibitor largely abolished the neuroprotective effects of MPH, evidenced by the reduced cell viability, increased apoptotic rate, and decreased protein expression of p-AMPK as well as p-ACC. Moreover, MPH treatment significantly alleviated the cerebral ischemia-reperfusion injury and decreased apoptosis in brain tissues, which may be associated with the AMPK/ACC pathway. Conclusions: MPH exerted protective activities against oxidative stress in the OGD/R model and ameliorated brain damage of rats in the middle cerebral artery occlusion model, at least in part, through activating the AMPK pathway. These data demonstrated neuroprotective properties of MPH and highlighted it as a potential therapeutic agent against cerebral ischemia-reperfusion injury.


2019 ◽  
Vol 22 (04) ◽  
pp. 122-130
Author(s):  
Rihab H Al-Mudhaffer ◽  
Laith M Abbas Al-Huseini ◽  
Saif M Hassan ◽  
Najah R Hadi

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kazuya Matsuo ◽  
Kohkichi Hosoda ◽  
Jun Tanaka ◽  
Yusuke Yamamoto ◽  
Taichiro Imahori ◽  
...  

Abstract Background We previously reported that heat shock protein 27 (HSP27) phosphorylation plays an important role in the activation of glucose-6-phosphate dehydrogenase (G6PD), resulting in the upregulation of the pentose phosphate pathway and antioxidant effects against cerebral ischemia–reperfusion injury. The present study investigated the effect of geranylgeranylacetone, an inducer of HSP27, on ischemia–reperfusion injury in male rats as a preliminary study to see if further research of the effects of geranylgeranylacetone on the ischemic stroke was warranted. Methods In all experiments, male Wistar rats were used. First, we conducted pathway activity profiling based on a gas chromatography–mass spectrometry to identify ischemia–reperfusion-related metabolic pathways. Next, we investigated the effects of geranylgeranylacetone on the pentose phosphate pathway and ischemia–reperfusion injury by real-time polymerase chain reaction (RT-PCR), immunoblotting, and G6PD activity, protein carbonylation and infarct volume analysis. Geranylgeranylacetone or vehicle was injected intracerebroventricularly 3 h prior to middle cerebral artery occlusion or sham operation. Results Pathway activity profiling demonstrated that changes in the metabolic state depended on reperfusion time and that the pentose phosphate pathway and taurine-hypotaurine metabolism pathway were the most strongly related to reperfusion among 137 metabolic pathways. RT-PCR demonstrated that geranylgeranylacetone did not significantly affect the increase in HSP27 transcript levels after ischemia–reperfusion. Immunoblotting showed that geranylgeranylacetone did not significantly affect the elevation of HSP27 protein levels. However, geranylgeranylacetone significantly increase the elevation of phosphorylation of HSP27 after ischemia–reperfusion. In addition, geranylgeranylacetone significantly affected the increase in G6PD activity, and reduced the increase in protein carbonylation after ischemia–reperfusion. Accordingly, geranylgeranylacetone significantly reduced the infarct size (median 31.3% vs 19.9%, p = 0.0013). Conclusions As a preliminary study, these findings suggest that geranylgeranylacetone may be a promising agent for the treatment of ischemic stroke and would be worthy of further study. Further studies are required to clearly delineate the mechanism of geranylgeranylacetone-induced HSP27 phosphorylation in antioxidant effects, which may guide the development of new approaches for minimizing the impact of cerebral ischemia–reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document