Effect of plant growth regulators, temperature and sucrose on shoot proliferation from the stem disc of Chinese jiaotou (Allium chinense) and in vitro bulblet formation

2008 ◽  
Vol 30 (4) ◽  
pp. 521-528 ◽  
Author(s):  
Zhen Xu ◽  
Yeong-Cheol Um ◽  
Chun-Hwan Kim ◽  
Gang Lu ◽  
De-Ping Guo ◽  
...  
2015 ◽  
Vol 5 (17) ◽  
pp. 85-95
Author(s):  
F. Ahmadloo ◽  
M. Tabari Kouchaksaraei ◽  
P. Azadi ◽  
A. Hamidi ◽  
E. Beiramizadeh ◽  
...  

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1124d-1124
Author(s):  
Gouchen Yang ◽  
Paul E. Read

BA, IBA and GA3 were incorporated into softwood tissues to be cultured in vitro or rooted as cuttings by adding the plant growth regulators (PGR) at various concentrations to a forcing solution containing 200 mg/l 8-hydroxyquinoline citrate and 2% sucrose. BA and GA3 helped break bud dormancy in autumn-collected stems and increased percent bud-break. IBA inhibited bud break and shoot elongation. Rooting of forced softwood cuttings was enhanced by IBA in the forcing solution, while GA3 inhibited the rooting of plant species tested. When dormant stems were forced with periodic additions of BA (10 mg/l) in the forcing solution, in vitro shoot proliferation was enhanced. However, inclusion of GA3 in the forcing solution reduced shoot proliferation. A pre-forcing NaOCl soak and a pre-forcing treatment with wetting agents accelerated bud break, size and number of shoots available for both micro- and macro-propagation of the woody plant species tested. The forcing solution protocol described is an effective PGR delivery system and it can be used by the propagator to extend the season for obtaining softwood growth suitable for use as in vitro explants or softwood cuttings.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


2009 ◽  
pp. 229-234 ◽  
Author(s):  
Guochen Yang ◽  
Zhongge (Cindy) Lu ◽  
T.M. Asante ◽  
P.E. Read

2011 ◽  
Vol 3 (3) ◽  
pp. 97-100
Author(s):  
Naimeh SHARIFMOGHADAM ◽  
Abbas SAFARNEJAD ◽  
Sayed Mohammad TABATABAEI

The Almond (Amygdalus communis) is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid) + 1 mg/l BA (Benzyl Adenine). Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid).


2021 ◽  
Author(s):  
Yuan-yuan Meng ◽  
Shi-jie Song ◽  
Sven Landrein

Abstract Passiflora xishuangbannaensis (Passifloraceae) is endemic to a few sites of Mengyang nature reserve in Yunnan, Xishuangbanna and less than 40 individuals have been recorded. Nine Passiflora species are endemic to Yunnan with most species occurring in South America, making P. xishuangbannaensis highly significant and emblematic to the conservation work in the region. This study is designed to provide the first protocol for in vitro organogenesis and plant regeneration for ex situ conservation and reintroduction for an Asian Passiflora species. Using internodes, petioles and tendrils we optimize calli formation and root elongation using several plant growth regulators, individually or in combination. We also assess the genetic stability of regenerated cells. The maximum callus induction and shoot bud differentiation were both achieved on half Murashige and Skoog basal medium supplemented with 4.44 µM 6-Benzylaminopurine and 1.08 µM 1-Naphthaleneacetic acid. The best rooting was achieved from 30 days old, regenerated shoots on half Murashige and Skoog basal medium supplemented with 1.08 µM 1-Naphthaleneacetic acid. Micropropagated plants were subjected to inter simple sequence repeat markers analyses. Collectively, 86 bands were generated from 6 primers of which 12 bands were polymorphic, showing genetic variation between the regenerated plantlets and the original plant. Response to plant growth regulators was more specific than most other studies using South American species, which could be explained by the morphological and physiological differences between South American and Asian Passiflora species


Sign in / Sign up

Export Citation Format

Share Document