Mass–density relationship changes along salinity gradient in Suaeda salsa L.

2010 ◽  
Vol 32 (6) ◽  
pp. 1031-1037 ◽  
Author(s):  
Hao Zhang ◽  
Genxuan Wang ◽  
Kefeng Zheng ◽  
Weiping Zhang
2012 ◽  
Vol 518-523 ◽  
pp. 5316-5319
Author(s):  
Xin Guo Yang

We studied a ramet population of switchgrass, caespitose in appearance, and proved the absence of density-dependent mortality. We present a deviation of mass-density allometry based on spatially explicit densities along the vertical space of the population. The number of ramets in the mean-ramet-height space explains the variation in the average weight of whole ramets (M) more accurately, with an asymptote towards critical self-thinning trajectory for such a mass-density relationship. With the development of size heterogeneity, a ‘vertical packing’ process appears in the population. We define the process as a similar ‘self-thinning’ trajectory, through the initial crowding of ramets in the mean-ramet-height space and continued transferring into the upper space and the lower space. The process presents a possibly competitive mechanism of self-thinning, local-competition-driving size deviation and vertical space packing. Here, log10 (M) = 2.91 - 1.25 log10 (NL). Local crowding degree (NL) is the number of ramets per unit area (m2) in the mean-ramet-height space class. Similar ‘self-thinning’ occurs in the ramet population, but it just indicates how those ramets escape out of the mean-ramet-height space class, and therefore how the mean weight of whole ramets increases. Self-thinning should be the result of local competition among effective number of individuals in a population, rather than apparent crowding degree presented by whole individuals. The critical mass-density allometry based on whole individuals should be only a special case.


2006 ◽  
Vol 94 (5) ◽  
pp. 953-958 ◽  
Author(s):  
JIAN-MING DENG ◽  
GEN-XUAN WANG ◽  
E. CHARLES MORRIS ◽  
XIAO-PING WEI ◽  
DONG-XIU LI ◽  
...  

2011 ◽  
Vol 418 (2) ◽  
pp. 916-928 ◽  
Author(s):  
Sava Donkov ◽  
Todor V. Veltchev ◽  
Ralf S. Klessen

2020 ◽  
Vol 635 ◽  
pp. A88
Author(s):  
S. Donkov ◽  
T. V. Veltchev ◽  
Ph. Girichidis ◽  
R. S. Klessen

The mass function of clumps observed in molecular clouds raises interesting theoretical issues, especially in its relation to the stellar initial mass function (IMF). We propose a statistical model of the mass function of prestellar cores (CMF), formed in self-gravitating isothermal clouds at a given stage of their evolution. The latter is characterized by the mass-density probability distribution function (ρ-PDF), which is a power-law with slope q. The different molecular clouds are divided into ensembles according to the PDF slope and each ensemble is represented by a single spherical cloud. The cores are considered as elements of self-similar structure typical for fractal clouds and are modeled by spherical objects populating each cloud shell. Our model assumes relations between size, mass, and density of the statistical cores. Out of these, a core mass-density relationship ρ ∝ mx is derived where x = 1∕(1 + q). We find that q determines the existence or nonexistence of a threshold density for core collapse. The derived general CMF is a power law of slope − 1 while the CMF of gravitationally unstable cores has a slope (−1 + x∕2), comparable with the slopes of the high-mass part of the stellar IMF and of observational CMFs.


Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


Author(s):  
Karen F. Han

The primary focus in our laboratory is the study of higher order chromatin structure using three dimensional electron microscope tomography. Three dimensional tomography involves the deconstruction of an object by combining multiple projection views of the object at different tilt angles, image intensities are not always accurate representations of the projected object mass density, due to the effects of electron-specimen interactions and microscope lens aberrations. Therefore, an understanding of the mechanism of image formation is important for interpreting the images. The image formation for thick biological specimens has been analyzed by using both energy filtering and Ewald sphere constructions. Surprisingly, there is a significant amount of coherent transfer for our thick specimens. The relative amount of coherent transfer is correlated with the relative proportion of elastically scattered electrons using electron energy loss spectoscopy and imaging techniques.Electron-specimen interactions include single and multiple, elastic and inelastic scattering. Multiple and inelastic scattering events give rise to nonlinear imaging effects which complicates the interpretation of collected images.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document