Low CO2 does not remove diffusional limitation to photosynthesis in salt stressed tomato during osmotic phase

2014 ◽  
Vol 36 (7) ◽  
pp. 1953-1956 ◽  
Author(s):  
S. Lovelli ◽  
M. Perniola
2021 ◽  
Author(s):  
Renate Weiß ◽  
Sebastian Gritsch ◽  
Günter Brader ◽  
Branislav Nikolic ◽  
Marc Spiller ◽  
...  

Development of novel, eco-friendly coating systems for application in lawn and turf management.


2021 ◽  
Vol 13 (15) ◽  
pp. 8237
Author(s):  
István Árpád ◽  
Judit T. Kiss ◽  
Gábor Bellér ◽  
Dénes Kocsis

The regulation of vehicular CO2 emissions determines the permissible emissions of vehicles in units of g CO2/km. However, these values only partially provide adequate information because they characterize only the vehicle but not the emission of the associated energy supply technology system. The energy needed for the motion of vehicles is generated in several ways by the energy industry, depending on how the vehicles are driven. These methods of energy generation consist of different series of energy source conversions, where the last technological step is the vehicle itself, and the result is the motion. In addition, sustainability characterization of vehicles cannot be determined by the vehicle’s CO2 emissions alone because it is a more complex notion. The new approach investigates the entire energy technology system associated with the generation of motion, which of course includes the vehicle. The total CO2 emissions and the resulting energy efficiency have been determined. For this, it was necessary to systematize (collect) the energy supply technology lines of the vehicles. The emission results are not given in g CO2/km but in g CO2/J, which is defined in the paper. This new method is complementary to the European Union regulative one, but it allows more complex evaluations of sustainability. The calculations were performed based on Hungarian data. Finally, using the resulting energy efficiency values, the emission results were evaluated by constructing a sustainability matrix similar to the risk matrix. If only the vehicle is investigated, low CO2 emissions can be achieved with vehicles using internal combustion engines. However, taking into consideration present technologies, in terms of sustainability, the spread of electric-only vehicles using renewable energies can result in improvement in the future. This proposal was supported by the combined analysis of the energy-specific CO2 emissions and the energy efficiency of vehicles with different power-driven systems.


Energy ◽  
2021 ◽  
pp. 120970
Author(s):  
Wang Dongliang ◽  
Meng Wenliang ◽  
Zhou Huairong ◽  
Li Guixian ◽  
Yang Yong ◽  
...  
Keyword(s):  

2021 ◽  
Vol 288 ◽  
pp. 123016
Author(s):  
Zhen Li ◽  
Liming Huang ◽  
Shunfeng Wang ◽  
Zhenghong Yang ◽  
Long Yu
Keyword(s):  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 69
Author(s):  
Alberto Martínez ◽  
Rocío Velázquez ◽  
Emiliano Zamora ◽  
María L. Franco ◽  
Camille Garzo ◽  
...  

The killer strains of Torulaspora delbrueckii can be used to improve the dominance of this yeast during must fermentation. The present work analyzes its usefulness for traditional sparkling wine making. T. delbrueckii killer strain dominated base wine fermentation better than non-killer strains and produced dried wines. The foam ability of T. delbrueckii base wines was very low compared to that of Saccharomyces cerevisiae. Significant positive correlations of foam parameters were found with some amounts of C4–C16 ethyl esters and proteins, and negative correlations with some antifoam alcohols. The organoleptic quality of T. delbrueckii base wines was considered unusual for cava making. While S. cerevisiae (single or mixed with T. delbrueckii) completed the second fermentation to produce dry sparkling wines with high CO2 pressure, single T. delbrueckii did not complete this fermentation, leaving sweet wines with low CO2 pressure. Death due to CO2 pressure was much higher in T. delbrueckii than in S. cerevisiae, making any killer effect of S. cerevisiae on T. delbrueckii irrelevant. However, the organoleptic quality of cava inoculated with mixtures of the two yeast species was better than that of wine inoculated exclusively with S. cerevisiae, and no deterioration in the quality of the foam was observed.


2013 ◽  
Vol 10 (7) ◽  
pp. 4897-4909 ◽  
Author(s):  
K. R. N. Anthony ◽  
G. Diaz-Pulido ◽  
N. Verlinden ◽  
B. Tilbrook ◽  
A. J. Andersson

Abstract. Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state (Ωa). Results of flume studies using intact reef habitats (1.2 m by 0.4 m), showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm), macroalgae (Chnoospora implexa), turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm) and high flow (35 compared to 8 cm s−1). In contrast, branching corals (Acropora aspera) increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm) during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Ωa by day (by around 0.13 h−1), but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.


Sign in / Sign up

Export Citation Format

Share Document