scholarly journals Experimental investigation of specific cutting forces and estimation of the heat partitioning under increasing tool wear in machining nickel-based super alloy IN 718

2020 ◽  
Vol 14 (4) ◽  
pp. 491-498
Author(s):  
Thorsten Augspurger ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Presented are an experimental setup and affiliated methodology to measure the specific cutting forces in the milling process with proceeding tool wear at simplified orthogonal milling kinematics. The cutting forces, cutter rotation angle and chip temperature are acquired by a time sensitive measuring system consisting of a synchronized dynamometer, ratio pyrometer and spindle encoder. The approach allows the accurate acquisition of cutting forces under defined engagement conditions and thus constitutes a valuable basis for cutting force modelling and tool wear monitoring approaches. The results show uniformly and linearly increasing forces over the entire range of undeformed chip thickness due to wear. Besides a mechanical view on the cutting process, also the thermal domain was included into the analysis. Therefore, a ratio pyrometer was used as part of the synchronized measurement system tracking the chips backside temperature in order to estimate a virtually continuous heat flow into the chip. This heat flow increased with wear and process power, which indicates that the chip’s temperature can be used as process monitoring variable for tool wear.

2010 ◽  
Vol 97-101 ◽  
pp. 2049-2052
Author(s):  
Yi Wan ◽  
Zhan Qiang Liu ◽  
Xing Ai

Five-axis milling is widely used in machining of complex surfaces parts. Part quality and productivity are extremely affected by cutting force and tool wear, especially thin-walled complex surface, such as turbine blade. Although extensive research has been conducted on cutting force and tool wear in 3-milling process, very few are on 5-axis milling and bull-nose mills. This paper presents cutting forces with various cutting conditions as well as tool wear patterns in five-axis milling super alloy, which is essential to cutting vibration and defelction analysis of thin-walled complex surfaces parts. The roles of lead angle and tilt angle in five axis milling were investigated, which provide data for NC program edit. In addition, experiments in this research proved that tool wear played affected cutting forces outstandingly.Therefore, tool wear played an very important role in tool change.


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


Author(s):  
Sergey A. Voronov ◽  
Igor A. Kiselev ◽  
Maxim G. Yakovlev

The paper is devoted to the description of a new technique (numerical and experimental) identification of the dependences between cutting forces and instantaneous chip thickness. It is required to measure only the cutting forces versus cutting conditions. Experimentally, for the given pair the processed material – the tool, coefficients of the cutting forces model are calculated by means of the optimization method (Nelder-Mead algorithm). The mathematical model of the milling process developed by authors on each step of the Nelder-Mead method is used for the process numerical simulation under given coefficients of the cutting force model. The elaborated numerical modeling algorithm allows investigating the dynamics and the kinematics of the milling process. The dynamic model of the tool, the algorithm of geometrical modeling of the instantaneous chip thickness, the finite element model of the detail are embedded into the whole model of the milling process.


2013 ◽  
Vol 554-557 ◽  
pp. 2054-2061 ◽  
Author(s):  
Hassan Zamani ◽  
Jan Patrick Hermani ◽  
Bernhard Sonderegger ◽  
Christof Sommitsch

During machining of hard materials, one approach to reduce tool wear is using a laser beam to preheat the material in front of the cutting zone. In this study, a new concept of laser-assisted milling with spindle and tool integrated laser beam guiding has been tested. The laser beam is located at the cutting edge and moving synchronously with the cutter. In experiment, a reduction in the resulting process cutting forces and tool wear has been observed in comparison to milling without laser. A three-dimensional finite element model in DEFORM 3D was developed to predict the cutting forces in the milling process with and without an additional laser heat source, based on a Johnson-Cook-type material constitutive model adapted for high strains and strain rates. Both in experiment and simulation, the deformation behavior of a Ti-6Al-4V workpiece has been investigated. The comparison of the resulting cutting forces showed very good agreement. Thus the new model has great potential to further optimize laser assisted machining processes.


2014 ◽  
Vol 565 ◽  
pp. 36-45
Author(s):  
Hadjadj Abdechafik ◽  
Kious Mecheri ◽  
Ameur Aissa

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the root mean square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an on-line monitoring system. Nevertheless we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal; this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored


2012 ◽  
Vol 504-506 ◽  
pp. 1269-1274 ◽  
Author(s):  
François Ducobu ◽  
Edouard Rivière-Lorphèvre ◽  
Enrico Filippi

Micro-milling with a cutting tool is a manufacturing technique that allows production of parts ranging from several millimeters to several micrometers. The technique is based on a downscaling of macroscopic milling process. Micro-milling is one of the most effective process to produce complex three-dimensional micro-parts, including sharp edges and with a good surface quality. Reducing the dimensions of the cutter and the cutting conditions requires taking into account physical phenomena that can be neglected in macro-milling. These phenomena include a size effect (nonlinear rising of specific cutting force when chip thickness decreases), the minimum chip thickness (under a given dimension, no chip can be machined) and the heterogeneity of the material (the size of the grains composing the material is significant as compared to the dimension of the chip). The aim of this paper is to introduce some phenomena, appearing in micromilling, in the mechanistic dynamic simulation software ‘dystamill’ developed for macro-milling. The software is able to simulate the cutting forces, the dynamic behavior of the tool and the workpiece and the kinematic surface finish in 2D1/2 milling operation (slotting, face milling, shoulder milling,…). It can be used to predict chatter-free cutting condition for example. The mechanistic model of the cutting forces is deduced from the local FEM simulation of orthogonal cutting. This FEM model uses the commercial software ABAQUS and is able to simulate chip formation and cutting forces in an orthogonal cutting test. This model is able to reproduce physical phenomena in macro cutting conditions (including segmented chip) as well as specific phenomena in micro cutting conditions (minimum chip thickness and size effect). The minimum chip thickness is also taken into account by the global model. The results of simulation for the machining of titanium alloy Ti6Al4V under macro and micro milling condition with the mechanistic model are presented discussed. This approach connects together local machining simulation and global models.


1992 ◽  
Vol 114 (3) ◽  
pp. 342-348 ◽  
Author(s):  
Ciro N. Ramirez ◽  
R. Joe Thornhill

The potential application of indirect tool wear monitoring methods in circuit board drilling is discussed. Monitoring methods are discussed and the state of tool wear monitoring research is presented. The nature of cutting forces developed in drilling FR-4 is examined using a simple numerical model of drilling which explains the structure of drill vibration spectra. The spec ta of predicted forces are shown to have nonzero amplitudes only at multiples of the fundamental frequency of the drill. Experimental spectra are presented which agree with these predictions.


Sign in / Sign up

Export Citation Format

Share Document