adaptive modelling
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 1)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3366
Author(s):  
Georgina C. A. Johnston ◽  
Benjamin J. Ahern ◽  
Chiara Palmieri ◽  
Alex C. Young

(1) Background: Parasagittal groove (PSG) changes are often present on advanced imaging of racing Thoroughbred fetlocks and have been suggested to indicate increased fracture risk. Currently, there is limited evidence differentiating the imaging appearance of prodromal changes in horses at risk of fracture from horses with normal adaptive modelling in response to galloping. This study aims to investigate imaging and gross PSG findings in racing Thoroughbreds and the comparative utility of different imaging modalities to detect PSG changes. (2) Methods: Cadaver limbs were collected from twenty deceased racing/training Thoroughbreds. All fetlocks of each horse were examined with radiography, low-field magnetic resonance imaging (MRI), computed tomography (CT), contrast arthrography and gross pathology. (3) Results: Horses with fetlock fracture were more likely to have lateromedial PSG sclerosis asymmetry and/or lateral PSG lysis. PSG lysis was not readily detected using MRI. PSG subchondral bone defects were difficult to differentiate from cartilage defects on MRI and were not associated with fractures. The clinical relevance of PSG STIR hyperintensity remains unclear. Overall, radiography was poor for detecting PSG changes. (4) Conclusions: Some PSG changes in Thoroughbred racehorses are common; however, certain findings are more prevalent in horses with fractures, possibly indicating microdamage accumulation. Bilateral advanced imaging is recommended in racehorses with suspected fetlock pathology.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7045
Author(s):  
Simona Alibrandi ◽  
Fabiana Nicita ◽  
Luigi Donato ◽  
Concetta Scimone ◽  
Carmela Rinaldi ◽  
...  

Background: Trimethylaminuria (TMAU) is a rare genetic disease characterized by the accumulation of trimethylamine (TMA) and its subsequent excretion trough main body fluids, determining the characteristic fish odour in affected patients. We realized an experimental study to investigate the role of several coding variants in the causative gene FMO3, that were only considered as polymorphic or benign, even if the available literature on them did not functionally explain their ineffectiveness on the encoded enzyme. Methods: Mutational analysis of 26 TMAU patients was realized by Sanger sequencing. Detected variants were, subsequently, deeply statistically and in silico characterized to determine their possible effects on the enzyme activity. To achieve this goal, a docking prediction for TMA/FMO3 and an unbinding pathway study were performed. Finally, a TMAO/TMA urine quantification by 1H-NMR spectroscopy was performed to support modelling results. Results: The FMO3 screening of all patients highlighted the presence of 17 variants distributed in 26 different haplotypes. Both non-sense and missense considered variants might impair the enzymatic kinetics of FMO3, probably reducing the interaction time between the protein catalytic site and TMA, or losing the wild-type binding site. Conclusions: Even if further functional assays will confirm our predictive results, considering the possible role of FMO3 variants with still uncertain effects, might be a relevant step towards the detection of novel scenarios in TMAU etiopathogenesis.


Author(s):  
Felicity J. Ni ◽  
Ariola Visha ◽  
Satyendra P. Bhavsar ◽  
Carlos Arnillas Alberto ◽  
George B. Arhonditsis

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1256
Author(s):  
Matthias Kaltenbrunner ◽  
Maria Anna Huka ◽  
Manfred Gronalt

Production planning models for the primary wood industry have been proposed for several decades. However, the majority of the research to date is concentrated on individual cases. This paper presents an integrated adaptive modelling framework that combines the proposed approaches and identifies evolving planning situations. With this conceptual modelling approach, a wide range of planning issues can be addressed by using a solid model basis. A planning grid along the time and resource dimensions is developed and four illustrative and interdependent application cases are described. The respective mathematical programming models are also presented in the paper and the prerequisites for industrial implementation are shown.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5178
Author(s):  
Jun Zhang ◽  
Jia Yu ◽  
Tao Guan ◽  
Jiajun Wang ◽  
Dawei Tong ◽  
...  

The compaction construction process is a critical operation in civil engineering projects. By establishing a construction simulation model, the compaction duration can be predicted to assist construction management. Existing studies have achieved adaptive modelling of input parameters from a Bayesian inference perspective, but usually assume the model as parametric distribution. Few studies adopt the nonparametric distribution to achieve robust inference, but still need to manually set hyper-parameters. In addition, the condition of when the roller stops moving ignores the impact of randomness of roller movement. In this paper, a new adaptive compaction construction simulation method is presented. The Bayesian field theory is innovatively adopted for input parameter adaptive modelling. Next, whether rollers have offset enough distance is used to determine the moment of stopping. Simulation experiments of the compaction process of a high earth dam project are demonstrated. The results indicate that the Bayesian field theory performs well in terms of accuracy and efficiency. When the size of roller speed dataset is 787,490, the Bayesian field theory costs only 1.54 s. The mean absolute error of predicted compaction duration reduces significantly with improved judgment condition. The proposed method can contribute to project resource planning, particularly in a high-frequency construction monitoring environment.


Sign in / Sign up

Export Citation Format

Share Document