Chitosan nanoparticles synthesis and surface modification using histidine/ polyethylenimine and evaluation of their gene transfection efficiency in breast cancer cells

Biologia ◽  
2022 ◽  
Author(s):  
Shahla Karimzadeh ◽  
Hoda Jafarizadeh-Malmiri ◽  
Ahad Mokhtarzadeh
2019 ◽  
Vol 236 ◽  
pp. 498-502 ◽  
Author(s):  
Deepika Divakaran ◽  
Jaya R. Lakkakula ◽  
Mukeshchand Thakur ◽  
Mukesh Kumar Kumawat ◽  
Rohit Srivastava

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 186 ◽  
Author(s):  
Sofia Piña Olmos ◽  
Roberto Díaz Torres ◽  
Eman Elbakrawy ◽  
Louise Hughes ◽  
Joseph Mckenna ◽  
...  

Breast cancer is the most commonly occurring cancer in women worldwide and the second most common cancer overall. The development of new therapies to treat this devastating malignancy is needed urgently. Nanoparticles are one class of nanomaterial with multiple applications in medicine, ranging from their use as drug delivery systems and the promotion of changes in cell morphology to the control of gene transcription. Nanoparticles made of the natural polymer chitosan are easy to produce, have a very low immunogenic profile, and diffuse easily into cells. One hallmark feature of cancer, including breast tumours, is the genome instability caused by defects in the spindle-assembly checkpoint (SAC), the molecular signalling mechanism that ensures the timely and high-fidelity transmission of the genetic material to an offspring. In recent years, the use of nanoparticles to treat cancer cells has gained momentum. This is in part because nanoparticles made of different materials can sensitise cancer cells to chemotherapy and radiotherapy. These advances prompted us to study the potential sensitising effect of chitosan-based nanoparticles on breast cancer cells treated with reversine, which is a small molecule inhibitor of Mps1 and Aurora B that induces premature exit from mitosis, aneuploidy, and cell death, before and after exposure of the cancer cells to X-ray irradiation. Our measurements of metabolic activity as an indicator of cell viability, DNA damage by alkaline comet assay, and immunofluorescence using anti-P-H3 as a mitotic biomarker indicate that chitosan nanoparticles elicit cellular responses that affect mitosis and cell viability and can sensitise breast cancer cells to X-ray radiation (2Gy). We also show that such a sensitisation effect is not caused by direct damage to the DNA by the nanoparticles. Taken together, our data indicates that chitosan nanoparticles have potential application for the treatment of breast cancer as adjunct to radiotherapy.


Author(s):  
Wenxing Song ◽  
Xing Su ◽  
David Gregory ◽  
Wei Li ◽  
Zhiqiang Cai ◽  
...  

Curcumin is a promising anti-cancer drug but its applications in cancer therapy are limited due to its poor solubility, short half-life and low bioavailability. In this study, curcumin loaded magnetic alginate / chitosan nanoparticles were fabricated to improve the bioavailability, uptake efficiency and cytotoxicity of curcumin to MDA-MB-231 breast cancer cells. Alginate and chitosan were deposited on Fe3O4 magnetic nanoparticles based on their electrostatic properties. The sizes of the nanoparticles (120-200 nm) were within the optimum range for drug delivery. Sustained curcumin release was obtained use the nanoparticles with the ability to control the curcumin release rate by altering the number of chitosan and alginate layers. Confocal fluorescence microscopy results showed that targeted delivery of curcumin with the aid of magnetic field were achieved. The FACS assay indicated that MDA-MB-231 cells treated with curcumin loaded nanoparticles had a 3-6 folds uptake efficiency to those treated with free curcumin. MTT assay indicated that the curcumin loaded nanoparticles exhibited significantly higher cytotoxicity toward MDA-MB-231 cells than toward HDF cells. The sustained release profiles, enhanced uptake efficiency and cytotoxicity to cancer cells as well as the targeting potential make MACPs a promising candidate for cancer therapy.


2017 ◽  
Vol 44 (2) ◽  
pp. 581-593 ◽  
Author(s):  
Jijun Wang ◽  
Xiaolong Wang ◽  
Tong Chen ◽  
Liyu Jiang ◽  
Qifeng Yang

Background/Aims: Increasing evidence indicates that Huaier extract has promising therapeutic effects against cancer. However, the mechanisms that underlie its anti-tumor effects remain unclear. In recent years, various studies have shown that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cancer development and progression. Here, we explored the role of lncRNAs in Huaier-induced tumor suppression. Methods: Microarray profiling was performed to identify the candidate lncRNAs affected by Huaier extract. Quantitative realtime PCR (qPCR) was used to evaluate the transfection efficiency and the influence of Huaier extract on H19 expression. The effect of Huaier extract on the cell viability was examined by MTT. Moreover, the rates of apoptotic cells were detected using flow-cytometric analysis. Western blot analysis was applied to show the protein levels of CBL. Results: Microarray data derived from Huaier-treated breast cancer cells identified H19 as a potential target. Huaier extract reduced the expression of H19. The over-expression of H19 inhibited the cytotoxic effects of Huaier extract; in contrast, reduced H19 expression enhanced the function of Huaier extract. MiR-675-5p was identified as a mature product of H19. Moreover, Huaier extract reduced the miR-675-5p expression. Upregulating miR-675-5p reversed the inhibitory effects of Huaier extract, whereas downregulating miR-675-5p sensitized breast cancer cells to the effect of Huaier extract. In addition, Huaier extract increased the expression of CBL protein, a direct target of miR-675-5p. Conclusion: Collectively, the data demonstrate that Huaier extract reduces viability and induces apoptosis in breast cancer cells via H19-miR-675-5p-CBL axis regulation.


Author(s):  
Catarina Oliveira ◽  
Céline S. Gonçalves ◽  
Eduarda P. Martins ◽  
Nuno M. Neves ◽  
Rui L. Reis ◽  
...  

2019 ◽  
Vol 23 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Reza Jafari ◽  
Naime Majidi Zolbanin ◽  
Jafar Majidi ◽  
Fatemeh Atyabi ◽  
Mehdi Yousefi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document