Human driving mechanism of regional land use change: A case study of Karst Mountain areas of southwestern China

2000 ◽  
Vol 10 (4) ◽  
pp. 289-295 ◽  
Author(s):  
Hui-yuan Zhang ◽  
Xin-yi Zhao ◽  
Yun-long Cai ◽  
Song Liu
Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 45
Author(s):  
Catarina Romão Sequeira ◽  
Francisco Rego ◽  
Cristina Montiel-Molina ◽  
Penelope Morgan

Wildfires in the Iberian Peninsula were large and frequent in the second half of the 20th century. Land use and land cover (LULC) also changed greatly. Our aim was to understand the relationship between LULC and fire in the western and eastern ends of the Iberian Central Mountain System. We compared two case study landscapes, the Estrela massif and the Ayllón massif, which are biophysically similar but with different social-ecological contexts. In both, fires were in general more likely in shrublands and pastures than in forests. Shrublands replaced forests after fires. Contrasting LULC in the two massifs, particularly pastures, likely explained the differences in fire occurrence, and reflected different regional land use policies and history. Fire here is a social-ecological system, influenced by specific LULC and with implications from landscape to regional scales. Understanding how LULC changes interact with fire is powerful for improving landscape and regional planning.


2012 ◽  
Vol 17 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Chuanyan ZHOU ◽  
Xun CHEN ◽  
Xiaoling LIU ◽  
Weiquan ZHAO ◽  
Kun LI ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


Sign in / Sign up

Export Citation Format

Share Document