Joint inversion of P-wave velocity and Vp-Vs ratio: imaging the deep structure in NE Japan

2014 ◽  
Vol 11 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Zhi Wang
2015 ◽  
Vol 3 (3) ◽  
pp. SZ59-SZ92 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas L. Davis ◽  
Bryan DeVault

Exploration for oil-bearing Morrow sandstones using conventional seismic data/methods has a startlingly low success rate of only 3%. The S-wave velocity contrast between the Morrow shale and A sandstone is strong compared with the P-wave velocity contrast, and, therefore, multicomponent seismic data could help to characterize these reservoirs. The SV and SH data used in this study are generated using S-wave data from horizontal source and horizontal receiver recording. Prestack P- and S-wave inversions, and joint P- and S-wave inversions, provide estimates of P- and S-wave impedances, and density for characterization of the Morrow A sandstone. Due to the weak P-wave amplitude-versus-angle response at the Morrow A sandstone top, the density and S-wave impedance estimated from joint P- and S-wave inversions were inferior to the prestack S-wave inversion. The inversion results were compared with the Morrow A sandstone thickness and density maps obtained from well logs to select the final impedance and density volume for interpretation. The P-wave impedance estimated from prestack P-wave data, as well as density and S-wave impedance estimated from prestack SV‐wave data were used to identify the distribution, thickness, quality, and porosity of the Morrow A sandstone. The stratal slicing method was used to get the P- and S-wave impedances and density maps. The S-wave impedance characterizes the Morrow A sandstone distribution better than the P-wave impedance throughout the study area. Density estimation from prestack inversion of SV data was able to distinguish between low- and high-quality reservoirs. The porosity volume was estimated from the density obtained from prestack SV-wave inversion. We found some possible well locations based on the interpretation.


2021 ◽  
Vol 20 (3) ◽  
pp. 532-538
Author(s):  
Guanbao Li ◽  
Zhengyu Hou ◽  
Jingqiang Wang ◽  
Guangming Kan ◽  
Baohua Liu

2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


Ultrasonics ◽  
2007 ◽  
Vol 46 (4) ◽  
pp. 341-348 ◽  
Author(s):  
S. Kahraman
Keyword(s):  
P Wave ◽  

Sign in / Sign up

Export Citation Format

Share Document