Application of multi-component joint inversion in oil and gas exploration: A case study of reservoir and gas saturation prediction of the Xujiahe formation in the PLN area of the central Sichuan Basin

2020 ◽  
Vol 17 (5-6) ◽  
pp. 879-889
Author(s):  
Dong Wang ◽  
Zhen-Hua He ◽  
Xu-Ben Wang ◽  
Le Li ◽  
Hai-Tao Yang ◽  
...  
2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


2010 ◽  
Vol 37 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Zhao Wenzhi ◽  
Wang Hongjun ◽  
Xu Chunchun ◽  
Bian Congsheng ◽  
Wang Zecheng ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 52-57
Author(s):  
Payam Salimi

Geophysical methods widely used in oil and gas exploration. Modeling of gravity data is used extensively to illustrate the geometry and interface between the sediments and bedrock. Which can help the salt dome, anticline folds, dome-shaped uplift of the continental platform and reef masses to be identified. There are various methods to illustrate the bedrock topography, and we will describe one of these methods in present paper. Using the upward continuation, we extract the residual gravity anomaly which in fact shows the local effect of bedrock gravity on the observed gravity. Then, according to the Oldenburg - Parker method, the residual gravity data are inversed and finally the 3D geometry the bedrock is illustrated. It should be noted that some software's like Surfer and Excel are used in this research but the program main code is written using Matlab programming.


Sign in / Sign up

Export Citation Format

Share Document