Decision tree and deep learning based probabilistic model for character recognition

2017 ◽  
Vol 24 (12) ◽  
pp. 2862-2876 ◽  
Author(s):  
A. K. Sampath ◽  
Dr. N. Gomathi
2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2019 ◽  
Author(s):  
Joseph Tassone ◽  
Peizhi Yan ◽  
Mackenzie Simpson ◽  
Chetan Mendhe ◽  
Vijay Mago ◽  
...  

BACKGROUND The collection and examination of social media has become a useful mechanism for studying the mental activity and behavior tendencies of users. OBJECTIVE Through the analysis of a collected set of Twitter data, a model will be developed for predicting positively referenced, drug-related tweets. From this, trends and correlations can be determined. METHODS Twitter social media tweets and attribute data were collected and processed using topic pertaining keywords, such as drug slang and use-conditions (methods of drug consumption). Potential candidates were preprocessed resulting in a dataset 3,696,150 rows. The predictive classification power of multiple methods was compared including regression, decision trees, and CNN-based classifiers. For the latter, a deep learning approach was implemented to screen and analyze the semantic meaning of the tweets. RESULTS The logistic regression and decision tree models utilized 12,142 data points for training and 1041 data points for testing. The results calculated from the logistic regression models respectively displayed an accuracy of 54.56% and 57.44%, and an AUC of 0.58. While an improvement, the decision tree concluded with an accuracy of 63.40% and an AUC of 0.68. All these values implied a low predictive capability with little to no discrimination. Conversely, the CNN-based classifiers presented a heavy improvement, between the two models tested. The first was trained with 2,661 manually labeled samples, while the other included synthetically generated tweets culminating in 12,142 samples. The accuracy scores were 76.35% and 82.31%, with an AUC of 0.90 and 0.91. Using association rule mining in conjunction with the CNN-based classifier showed a high likelihood for keywords such as “smoke”, “cocaine”, and “marijuana” triggering a drug-positive classification. CONCLUSIONS Predictive analysis without a CNN is limited and possibly fruitless. Attribute-based models presented little predictive capability and were not suitable for analyzing this type of data. The semantic meaning of the tweets needed to be utilized, giving the CNN-based classifier an advantage over other solutions. Additionally, commonly mentioned drugs had a level of correspondence with frequently used illicit substances, proving the practical usefulness of this system. Lastly, the synthetically generated set provided increased scores, improving the predictive capability. CLINICALTRIAL None


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 555
Author(s):  
Jui-Sheng Chou ◽  
Chia-Hsuan Liu

Sand theft or illegal mining in river dredging areas has been a problem in recent decades. For this reason, increasing the use of artificial intelligence in dredging areas, building automated monitoring systems, and reducing human involvement can effectively deter crime and lighten the workload of security guards. In this investigation, a smart dredging construction site system was developed using automated techniques that were arranged to be suitable to various areas. The aim in the initial period of the smart dredging construction was to automate the audit work at the control point, which manages trucks in river dredging areas. Images of dump trucks entering the control point were captured using monitoring equipment in the construction area. The obtained images and the deep learning technique, YOLOv3, were used to detect the positions of the vehicle license plates. Framed images of the vehicle license plates were captured and were used as input in an image classification model, C-CNN-L3, to identify the number of characters on the license plate. Based on the classification results, the images of the vehicle license plates were transmitted to a text recognition model, R-CNN-L3, that corresponded to the characters of the license plate. Finally, the models of each stage were integrated into a real-time truck license plate recognition (TLPR) system; the single character recognition rate was 97.59%, the overall recognition rate was 93.73%, and the speed was 0.3271 s/image. The TLPR system reduces the labor force and time spent to identify the license plates, effectively reducing the probability of crime and increasing the transparency, automation, and efficiency of the frontline personnel’s work. The TLPR is the first step toward an automated operation to manage trucks at the control point. The subsequent and ongoing development of system functions can advance dredging operations toward the goal of being a smart construction site. By intending to facilitate an intelligent and highly efficient management system of dredging-related departments by providing a vehicle LPR system, this paper forms a contribution to the current body of knowledge in the sense that it presents an objective approach for the TLPR system.


2021 ◽  
Vol 7 (5) ◽  
pp. 3076-3086
Author(s):  
Zhang Shuili ◽  
Zhao Yi ◽  
Zheng Kexin ◽  
Zhang Jun ◽  
Zheng Fuchun

Objectives: In view of the characteristics of online teaching during the coronavirus pandemic and the importance of practical teaching in training students’ skills in the process of graduate education, this paper proposes an online scene teaching mode that takes projects as the carrier and integrates with deep learning. In order to meet the demand for information and communication engineering professionals in the big data context, the whole teaching process is divided into four stages: Topic selection, Teaching project setting, online teaching interaction and teaching evaluation. In the teaching process of Python Data Analysis Foundations, the project “establishment process of tobacco picking decision tree based on information gain” is taken as the teaching case. Prior knowledge and references are pushed through the cloud platform before class, and The scene of tobacco picking affected by the weather is set in the online classroom to guide students to seek solutions to problems, and the results are presented with graphics to assist students to summarize, and then reset the scene to promote knowledge transfer, so as to integrate deep learning into the teaching process, and modify the corresponding stages according to the teaching evaluation results. The content of the scene is gradually increased from easy to difficult, from simple to complex, and from least to most, gradually increasing the difficulty, which enhances students’ learning interest and sense of achievement. Meanwhile, students’ initiative to participate in curriculum research further strengthens the effectiveness of the course in serving scientific research, which has a certain value of popularization and application.


Sign in / Sign up

Export Citation Format

Share Document