Simulation of soil carbon changes due to land use change in urban areas in China

2013 ◽  
Vol 7 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Cui Hao ◽  
Jo Smith ◽  
Jiahua Zhang ◽  
Weiqing Meng ◽  
Hongyuan Li
2019 ◽  
Vol 37 (2) ◽  
pp. 197
Author(s):  
Roxana Jhoana Domínguez Bautista ◽  
Aydee Tobías Baeza ◽  
Silvia Del Carmen Ruíz Acosta ◽  
Pedro Salvador Morales ◽  
Adalberto Galindo Alcántara ◽  
...  

As a result of its geographical location and its proximity to the city of Villahermosa in Tabasco, the Ocuilzapotlan-Macultepec road corridor is an area of great potential for urban growth. This has originated intense changes in land use in its peri-urban area that have affected the functions of its natural resources. For this reason, the objective of this research was to analyze land use changes that occurred during the period 2000-2017 and the impact on some environmental functions of the peri-urban areas of said corridor. By means of image analysis we identif ied land uses, land use change rates, and regulation of water flows. Our results suggest that urban areas and grasslands grew by 2.27 and 2.26%, respectively, while forests and wetlands decreased by 11.48 and 1.09%, respectively. Soil carbon concentrations are estimated to be 92.4 ± 5.1, 73.2 ± 2.8 and 220.4 ± 4.6 Mg C ha-1 for meadow, forest and wetland uses, respectively. The shoot compartment of the forest stores 63.27 Mg C ha-1, which, when added to soil carbon, totals 136.47 Mg C ha-1, making this land use the second most important carbon store, only after wetlands. It is concluded that the greatest environmental impact caused by land use change of the peri-urban area of the polygon studied is the reduction of wetlands since they are the main areas of carbon stores and are regulators of water flows.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Júnior Melo Damian ◽  
Mariana Regina Durigan ◽  
Maurício Roberto Cherubin ◽  
Stoécio Malta Ferreira Maia ◽  
Stephen M. Ogle ◽  
...  

Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


2022 ◽  
pp. 90-126
Author(s):  
Dimple Behal

With the rapid pace of urbanization, land-use change is essential for economic and social progress; however, it does not come without costs. With such rapid urbanization, there comes pressure on the land and its resources, like that of food and timber production with a significant impact on the livelihood of millions of people. With the loss of agricultural land due to developmental activities, future agriculture would be very intensive. Therefore, it is likely with the existing pattern of allocating land uses for future development that we may lose the ecosystem services and highly productive agricultural lands. The value of these ecosystem services to agriculture is enormous and often underappreciated. The study focuses on identifying underlying causes of the land-use change, ecosystem services affected due to land-use change in peri-urban areas of Chandigarh using spatial mapping of affected ecosystem services and suggesting proposals for promoting agricultural ecosystem values using economically-informed policy instruments.


2019 ◽  
Vol 11 (7) ◽  
pp. 885 ◽  
Author(s):  
Ustaoglu ◽  
Aydınoglu

. Population growth, economic development and rural-urban migration have caused rapid expansion of urban areas and metropolitan regions in Turkey. The structure of urban administration and planning has faced different socio-economic and political challenges, which have hindered the structured and planned development of cities and regions, resulting in an irregular and uneven development of these regions. We conducted detailed comparative analysis on spatio-temporal changes of the identified seven land-use/cover classes across different regions in Turkey with the use of Corine Land Cover (CLC) data of circa 1990, 2000, 2006 and 2012, integrated with Geographic Information System (GIS) techniques. Here we compared spatio-temporal changes of urban and non-urban land uses, which differ across regions and across different hierarchical levels of urban areas. Our findings have shown that peri-urban areas are growing more than rural areas, and even growing more than urban areas in some regions. A deeper look at regions located in different geographical zones pointed to substantial development disparities across western and eastern regions of Turkey. We also employed multiple regression models to explain any possible drivers of land-use change, regarding both urban and non-urban land uses. The results reveal that the three influencing factors-socio-economic characteristics, regional characteristics and location, and development constraints, facilitate land-use change. However, their impacts differ in different geographical locations, as well as with different hierarchical levels.


2020 ◽  
Vol 150 ◽  
pp. 107998
Author(s):  
André L.C. Franco ◽  
Maurício R. Cherubin ◽  
Carlos E.P. Cerri ◽  
Johan Six ◽  
Diana H. Wall ◽  
...  

2020 ◽  
Vol 287 ◽  
pp. 106690 ◽  
Author(s):  
Aldair de Souza Medeiros ◽  
Stoécio Malta Ferreira Maia ◽  
Thiago Cândido dos Santos ◽  
Tâmara Cláudia de Araújo Gomes

Sign in / Sign up

Export Citation Format

Share Document