scholarly journals On fixed point approach to equilibrium problem

Author(s):  
Le Dung Muu ◽  
Xuan Thanh Le
Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
V. Vijayakumar ◽  
Le Nhat Huynh ◽  
R. Udhayakumar ◽  
Kottakkaran Sooppy Nisar

AbstractIn this paper, we investigate the approximate controllability of fractional evolution inclusions with hemivariational inequalities of order $1< r<2$ 1 < r < 2 . The main results of this paper are verified by using the fractional theories, multivalued analysis, cosine families, and fixed-point approach. At first, we discuss the existence of the mild solution for the class of fractional systems. After that, we establish the approximate controllability of linear and semilinear control systems. Finally, an application is presented to illustrate our theoretical results.


2021 ◽  
Vol 109 (1-2) ◽  
pp. 262-269
Author(s):  
P. Saha ◽  
Pratap Mondal ◽  
B. S. Choudhury

Filomat ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 1347-1357
Author(s):  
Pakkapon Preechasilp

In this paper, the viscosity explicit midpoint method for nonexpansive mappings in Hadamard spaces is introduced. Under certain appropriate conditions on the sequence of parameters, it is proved that the limit of the approximating sequence generated by proposed method converges strongly to a fixed point of T which solves some variational inequalities. Moreover, we give an application to the equilibrium problem.


2021 ◽  
Vol 66 (1) ◽  
pp. 95-103
Author(s):  
Dumitru Motreanu ◽  
Viorica Venera Motreanu

"The paper focuses on a nonstandard Dirichlet problem driven by the operator $-\Delta_p +\mu\Delta_q$, which is a competing $(p,q)$-Laplacian with lack of ellipticity if $\mu>0$, and exhibiting a reaction term in the form of a convection (i.e., it depends on the solution and its gradient) composed with the convolution of the solution with an integrable function. We prove the existence of a generalized solution through a combination of fixed-point approach and approximation. In the case $\mu\leq 0$, we obtain the existence of a weak solution to the respective elliptic problem."


Sign in / Sign up

Export Citation Format

Share Document