scholarly journals Nonstandard Dirichlet problems with competing (p,q)-Laplacian, convection, and convolution

2021 ◽  
Vol 66 (1) ◽  
pp. 95-103
Author(s):  
Dumitru Motreanu ◽  
Viorica Venera Motreanu

"The paper focuses on a nonstandard Dirichlet problem driven by the operator $-\Delta_p +\mu\Delta_q$, which is a competing $(p,q)$-Laplacian with lack of ellipticity if $\mu>0$, and exhibiting a reaction term in the form of a convection (i.e., it depends on the solution and its gradient) composed with the convolution of the solution with an integrable function. We prove the existence of a generalized solution through a combination of fixed-point approach and approximation. In the case $\mu\leq 0$, we obtain the existence of a weak solution to the respective elliptic problem."

2020 ◽  
Vol 18 (1) ◽  
pp. 1510-1517
Author(s):  
Dumitru Motreanu

Abstract The paper deals with a quasilinear Dirichlet problem involving a competing (p,q)-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to establish the existence of solutions in a generalized sense. If in place of competing (p,q)-Laplacian we consider the usual (p,q)-Laplacian, our results ensure the existence of weak solutions.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


Author(s):  
Pier Domenico Lamberti ◽  
Luigi Provenzano

AbstractWe consider the problem of describing the traces of functions in $$H^2(\Omega )$$ H 2 ( Ω ) on the boundary of a Lipschitz domain $$\Omega $$ Ω of $$\mathbb R^N$$ R N , $$N\ge 2$$ N ≥ 2 . We provide a definition of those spaces, in particular of $$H^{\frac{3}{2}}(\partial \Omega )$$ H 3 2 ( ∂ Ω ) , by means of Fourier series associated with the eigenfunctions of new multi-parameter biharmonic Steklov problems which we introduce with this specific purpose. These definitions coincide with the classical ones when the domain is smooth. Our spaces allow to represent in series the solutions to the biharmonic Dirichlet problem. Moreover, a few spectral properties of the multi-parameter biharmonic Steklov problems are considered, as well as explicit examples. Our approach is similar to that developed by G. Auchmuty for the space $$H^1(\Omega )$$ H 1 ( Ω ) , based on the classical second order Steklov problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
V. Vijayakumar ◽  
Le Nhat Huynh ◽  
R. Udhayakumar ◽  
Kottakkaran Sooppy Nisar

AbstractIn this paper, we investigate the approximate controllability of fractional evolution inclusions with hemivariational inequalities of order $1< r<2$ 1 < r < 2 . The main results of this paper are verified by using the fractional theories, multivalued analysis, cosine families, and fixed-point approach. At first, we discuss the existence of the mild solution for the class of fractional systems. After that, we establish the approximate controllability of linear and semilinear control systems. Finally, an application is presented to illustrate our theoretical results.


2021 ◽  
Vol 109 (1-2) ◽  
pp. 262-269
Author(s):  
P. Saha ◽  
Pratap Mondal ◽  
B. S. Choudhury

2021 ◽  
Vol 127 (2) ◽  
pp. 287-316
Author(s):  
Ayoub El Gasmi

Let $\Omega\subset \mathbb{C}^{n}$ be a bounded $m$-hyperconvex domain, where $m$ is an integer such that $1\leq m\leq n$. Let $\mu$ be a positive Borel measure on $\Omega$. We show that if the complex Hessian equation $H_m (u) = \mu$ admits a (weak) subsolution in $\Omega$, then it admits a (weak) solution with a prescribed least maximal $m$-subharmonic majorant in $\Omega$.


2018 ◽  
Vol 149 (2) ◽  
pp. 533-560
Author(s):  
Patricio Felmer ◽  
Erwin Topp

In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.


Sign in / Sign up

Export Citation Format

Share Document