Abyssal Circulation in the Philippine Sea

2020 ◽  
Vol 19 (2) ◽  
pp. 249-262
Author(s):  
Fangguo Zhai ◽  
Yanzhen Gu
2013 ◽  
Vol 44 (2) ◽  
pp. 662-675 ◽  
Author(s):  
Paul Spence ◽  
Erik van Sebille ◽  
Oleg A. Saenko ◽  
Matthew H. England

Abstract This study uses a global ocean eddy-permitting climate model to explore the export of abyssal water from the Southern Ocean and its sensitivity to projected twenty-first-century poleward-intensifying Southern Ocean wind stress. The abyssal flow pathways and transport are investigated using a combination of Lagrangian and Eulerian techniques. In an Eulerian format, the equator- and poleward flows within similar abyssal density classes are increased by the wind stress changes, making it difficult to explicitly diagnose changes in the abyssal export in a meridional overturning circulation framework. Lagrangian particle analyses are used to identify the major export pathways of Southern Ocean abyssal waters and reveal an increase in the number of particles exported to the subtropics from source regions around Antarctica in response to the wind forcing. Both the Lagrangian particle and Eulerian analyses identify transients as playing a key role in the abyssal export of water from the Southern Ocean. Wind-driven modifications to the potential energy component of the vorticity balance in the abyss are also found to impact the Southern Ocean barotropic circulation.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Aki Ito ◽  
Takashi Tonegawa ◽  
Naoki Uchida ◽  
Yojiro Yamamoto ◽  
Daisuke Suetsugu ◽  
...  

Abstract We applied tomographic inversion and receiver function analysis to seismic data from ocean-bottom seismometers and land-based stations to understand the structure and its relationship with slow slip events off Boso, Japan. First, we delineated the upper boundary of the Philippine Sea Plate based on both the velocity structure and the locations of the low-angle thrust-faulting earthquakes. The upper boundary of the Philippine Sea Plate is distorted upward by a few kilometers between 140.5 and 141.0°E. We also determined the eastern edge of the Philippine Sea Plate based on the delineated upper boundary and the results of the receiver function analysis. The eastern edge has a northwest–southeast trend between the triple junction and 141.6°E, which changes to a north–south trend north of 34.7°N. The change in the subduction direction at 1–3 Ma might have resulted in the inflection of the eastern edge of the subducted Philippine Sea Plate. Second, we compared the subduction zone structure and hypocenter locations and the area of the Boso slow slip events. Most of the low-angle thrust-faulting earthquakes identified in this study occurred outside the areas of recurrent Boso slow slip events, which indicates that the slow slip area and regular low-angle thrust earthquakes are spatially separated in the offshore area. In addition, the slow slip areas are located only at the contact zone between the crustal parts of the North American Plate and the subducting Philippine Sea Plate. The localization of the slow slip events in the crust–crust contact zone off Boso is examined for the first time in this study. Finally, we detected a relatively low-velocity region in the mantle of the Philippine Sea Plate. The low-velocity mantle can be interpreted as serpentinized peridotite, which is also found in the Philippine Sea Plate prior to subduction. The serpentinized peridotite zone remains after the subduction of the Philippine Sea Plate and is likely distributed over a wide area along the subducted slab.


2013 ◽  
Vol 31 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Zheng Tang ◽  
Tiegang Li ◽  
Fengming Chang ◽  
Qingyun Nan ◽  
Qing Li

Island Arc ◽  
2021 ◽  
Author(s):  
Ken‐ichi Hirauchi ◽  
Izumi Segawa ◽  
Yui Kouketsu ◽  
Yumiko Harigane ◽  
Yasuhiko Ohara ◽  
...  

2014 ◽  
Vol 15 (5) ◽  
pp. 1977-1990 ◽  
Author(s):  
Ryuta Arai ◽  
Takaya Iwasaki ◽  
Hiroshi Sato ◽  
Susumu Abe ◽  
Naoshi Hirata

Sign in / Sign up

Export Citation Format

Share Document