Modeling and cyclic behavior of segmental bridge column connected with shape memory alloy bars

2012 ◽  
Vol 11 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Hwasung Roh ◽  
Andrei M. Reinhorn ◽  
Jong Seh Lee
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1701 ◽  
Author(s):  
Ammar Abbass ◽  
Reza Attarnejad ◽  
Mehdi Ghassemieh

From past earthquakes, it has been found that the large residual displacement of bridges after seismic events could be one of the major causes of instability and serviceability disruption of the bridge. The shape memory alloy bars have the ability to reduce permanent deformations of concrete structures. This paper represents a new approach for retrofitting and seismic rehabilitation of previously designed bridge columns. In this concept, the RC bridge column was divided into three zones. The first zone in the critical region of the column where the plastic hinge is possible to occur was retrofitted with near-surface mounted shape memory alloy technique and wrapped with FRP sheets. The second zone, being above the plastic hinge, was confined with Fiber-Reinforced Polymer (FRP) jacket only, and the rest of the column left without any retrofitting. For this purpose, five types of shape memory alloy bars were used. One rectangular and one circular RC bridge column was selected and retrofitted with this proposed technique. The retrofitted columns were numerically investigated under nonlinear static and lateral cyclic loading using 2D fiber element modeling in OpenSees software. The results were normalized and compared with the as-built column. The results indicated that the relative self-centering capacity of RC bridge piers retrofitted with this new approach was highly greater than that of the as-built column. In addition, enhancements in strength and ductility were observed.


Author(s):  
Jong Wan Hu ◽  
Dong Keon Kim ◽  
Eunsoo Choi

Superelastic shape memory alloy materials have become increasingly prevalent for recentering devices that have the ability to recover their plastic deformation automatically. For this reason, this study proposed new clip-angle connections incorporating superelastic shape memory alloy bolts. Including component spring models, mechanical joint models of steel bolted connections and shape memory alloy bolted connections are created for numerically simulating their cyclic behavior. The numerical analysis results are then compared to each other in terms of ultimate strength, energy dissipation, and permanent deformation. In particular, over 60% of the total displacement was recovered during unloads in case of shape memory alloy bolted connections, indicating that the proposed smart connections display obvious recentering features in their behaviors.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 511
Author(s):  
Alireza Tabrizikahou ◽  
Mieczysław Kuczma ◽  
Magdalena Łasecka-Plura ◽  
Ehsan Noroozinejad Noroozinejad Farsangi

The behavior of masonry shear walls reinforced with pseudoelastic Ni–Ti shape memory alloy (SMA) strips and engineered cementitious composite (ECC) sheets is the main focus of this paper. The walls were subjected to quasi-static cyclic in-plane loads and evaluated by using Abaqus. Eight cases of strengthening of masonry walls were investigated. Three masonry walls were strengthened with different thicknesses of ECC sheets using epoxy as adhesion, three walls were reinforced with different thicknesses of Ni–Ti strips in a cross form bonded to both the surfaces of the wall, and one was utilized as a reference wall without any reinforcing element. The final concept was a hybrid of strengthening methods in which the Ni–Ti strips were embedded in ECC sheets. The effect of mesh density on analytical outcomes is also discussed. A parameterized analysis was conducted to examine the influence of various variables such as the thickness of the Ni–Ti strips and that of ECC sheets. The results show that using the ECC sheet in combination with pseudoelastic Ni–Ti SMA strips enhances the energy absorption capacity and stiffness of masonry walls, demonstrating its efficacy as a reinforcing method.


Sign in / Sign up

Export Citation Format

Share Document