Investigation into dynamic response of regional sites to seismic waves using shaking table testing

2015 ◽  
Vol 14 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Yadong Li ◽  
Jie Cui ◽  
Tianding Guan ◽  
Liping Jing
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Honggang Wu ◽  
Zhixin Wu ◽  
Hao Lei ◽  
Tianwen Lai

To clarify the feasibility of BFRP (basalt fiber reinforced plastics) anchors instead of steel anchors in the seismic application of slopes under different vibration strengths, a series of shaking table tests were carried out to strengthen the slope using BFRP anchors and steel anchors, respectively. By studying the dynamic response recorded in the slope model and the observed experimental phenomena, the acceleration dynamic response and displacement spectrum dynamic response of the two slope models were analyzed. The test results show that the deformation stage of the slope reinforced by the two types of anchors is basically the same during the test, that is, elastic, plastic (potential sliding surface and plastic strengthening), and failure stages, respectively. The slope is in the elastic stage before the 0.2 g seismic wave, and it gradually enters the plastic stage after the 0.4 g seismic wave. However, the peak acceleration and displacement of the slope reinforced by steel anchors are greater than those of the slope reinforced by BFRP anchors under the same working conditions of seismic waves. In addition, we found that the acceleration response spectrum distribution curve of each measuring point in the short period has an obvious amplification effect along the elevation, and its predominant period has a forward migration phenomenon with the increase of the height of the measuring point, which also indicates that the higher frequency seismic wave has a greater impact on the top of the slope. The BFRP anchors, as a kind of flexible structure supporting slope, can effectively reduce the impact of seismic waves on the slope and attenuate seismic waves to a certain extent compared with steel anchors. Furthermore, the BFRP anchors can be deformed in coordination with the slope, which can improve the overall working performance of the slope, especially limit the dynamic response of the middle and lower slopes. These results can provide a theoretical guide for the seismic design of BFRP anchors for high slopes.


2015 ◽  
Vol 82 ◽  
pp. 186-198 ◽  
Author(s):  
Qing-Hua Han ◽  
Ying Xu ◽  
Yan Lu ◽  
Jie Xu ◽  
Qiu-Hong Zhao

2017 ◽  
Vol 62 (1) ◽  
pp. 102-111
Author(s):  
Abdelhalim Airouche ◽  
Hassan Aknouche ◽  
Hakim Bechtoula ◽  
Nourredine Mezouer ◽  
Abderrahmane Kibboua

Shaking table testing continues to play an important role in earthquake engineering research. It has been recognized as a powerful testing method to evaluate structural components and systems under realistic dynamic loads. Although it represents a very attractive experimental procedure, many technical challenges, which require attention and consideration, still remain. High fidelity in signal reproduction is the focus of the work presented in this paper. The main objective of this paper is to investigate the capabilities of adaptive control techniques based on Amplitude Phase Control (APC) and Adaptive Harmonic Cancellation (AHC) on the harmonic signal tracking performance of the shaking table. A series of 232 sinusoidal command waveforms with various frequencies and amplitudes were conducted on the shaking table of the laboratory of the National Earthquake Engineering Applied Research Center (CGS, Algeria). Experimental results are reported and recommendations on the use of these adaptive control techniques are discussed.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 426 ◽  
Author(s):  
Asad H. Humaish ◽  
Mohammed S. Shamkhi ◽  
Thualfiqar K. Al-Hachami

The seismic performance and the dynamic response of concrete gravity dams can be verified by several techniques. Both geotechnical centrifuge apparatus (under N-g values) and shaking table (under 1-g) are the commonly used techniques in the world. This paper deals with designing, manufacturing, and testing of small shaking table to investigate different geotechnical and engineering problems. The main body of the designed shaking table consists of steel frame (local iron) manufactured as a hollow box with steel plate, 6mm in thickness and one-direction movable platform (as a basket carrying the container of the model).  Inside this main box, all the mechanical parts that work as one system to generate the motion of the seismic wave with an acceleration that needed to the test.  The facilities of this shaking table, the movable base has a dimension of 0.8m x1.2m and the platform mass approximately 2 kN, the maximum allowable model weight of 10kN, the range of frequency from 0 to 20 Hz, the maximum acceleration amplitude of 1.2g and maximum displacement of 14mm. It can simulate only the single frequency motion (i.e. sinusoidal wave). The measured accelerations at different soil model level for the tested shaker under 0.6g sinusoidal waveform gave a reasonable prediction for the dynamic response and the amplification characteristics.  


Sign in / Sign up

Export Citation Format

Share Document