Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

2015 ◽  
Vol 33 (1) ◽  
pp. 330-336 ◽  
Author(s):  
Seong Woo Kim ◽  
Hyun Muk Choi
Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for improvement of mechanical and barrier properties and functionality of biodegradable polymers for food packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of human and environment to such nanomaterials, this rising questions about the risks of nanomaterials since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or they remain embedded in the matrix. In this work the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, TEM, AFM and SEM were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment to the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowastes stream.


2014 ◽  
Vol 27 (9) ◽  
pp. 693-700 ◽  
Author(s):  
Ling-Ling Wu ◽  
Jia-jun Wang ◽  
Xia He ◽  
Tao Zhang ◽  
Hui Sun

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1839
Author(s):  
Siti Noor Kamilah Mohamad ◽  
Irmawati Ramli ◽  
Luqman Chuah Abdullah ◽  
Nor Hasimah Mohamed ◽  
Md. Saiful Islam ◽  
...  

In this work, to fabricate a novel composite consisting of chitosan/poly-lactic acid doped with graphene oxide (CS/PLA-GO), composites were prepared via solution blending method to create various compositions of CS and PLA (90/10, 70/30 and 50/50CS/PLA-GO). Graphene oxide (GO) was added into a PLA solution prior to blending it with chitosan (CS). The surface morphology and structural properties of synthesized composites were characterized using FT-IR, SEM and XRD analysis. The performances of synthesized composites on thermal strength, mechanical strength, water absorption, and microbial activity were also evaluated through standard testing methods. The morphology of 70/30CS/PLA-GO became smoother with the addition of GO due to enhanced interfacial adhesion between CS, PLA and GO. The presence of GO has also improved the miscibility of CS and PLA and has superior properties compared to CS/PLA composites. Moreover, the addition of GO has boosted the thermal stability of the composite, with a significant enhancement of Td and Tg. The highest Td and Tg were accomplished at 389 °C and 76.88 °C, respectively, for the 70/30CS/PLA-GO composite in comparison to the CS and PLA that recorded Td at 272 °C and 325 °C and Tg at 61 °C and 60 °C, respectively. In addition, as reinforcement, GO provided a significant influence on the tensile strength of composites where the tensile modulus showed remarkable improvement compared to pure CS and CS/PLA composites. Furthermore, CS/PLA-GO composites showed excellent water-barrier properties. Among other compositions, 70/30CS/PLA revealed the greatest decrement in water absorption. From the antibacterial results, it was observed that 90/10CS/PLA-GO and 70/30CS/PLA-GO showed an inhibitory effect and had wide inhibition zones which were 8.0 and 8.5 mm, respectively, against bacteria Bacillus Subtillis B29.


2014 ◽  
Vol 464 ◽  
pp. 110-118 ◽  
Author(s):  
Hua-Dong Huang ◽  
Peng-Gang Ren ◽  
Jia-Zhuang Xu ◽  
Ling Xu ◽  
Gan-Ji Zhong ◽  
...  

2019 ◽  
Vol 30 (7) ◽  
pp. 1709-1715 ◽  
Author(s):  
Chunli Fan ◽  
Hai Chi ◽  
Cheng Zhang ◽  
Rui Cui ◽  
Wangwei Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document