entanglement network
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hao Qian ◽  
Na Li ◽  
Lei Yang ◽  
Younian Xu ◽  
Rong Chen ◽  
...  

AbstractIt is believed that inhaled anesthetics occupy hydrophobic pockets within target proteins, but how inhaled anesthetics with diverse shapes and sizes fit into highly structurally selective pockets is unknown. For hydroxide ions are hydrophobic, we determined whether hydroxide ions could bridge inhaled anesthetics and protein pockets. We found that small additional load of cerebral hydroxide ions decreases anesthetic potency. Multiple-water entanglement network, derived from Ising model, has a great ability to amplify ultralow changes in the cerebral hydroxide ion concentration, and consequently, amplified hydroxide ions account for neural excitability. Molecular dynamics simulations showed that inhaled anesthetics produce anesthesia by attenuating the formation of multiple-water entanglement network. This work suggests amplified hydroxide ions underlying a unified mechanism for the anesthetic action of inhaled anesthetics.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 372
Author(s):  
Xinyi Chen ◽  
Antonio Pizzi ◽  
Hisham Essawy ◽  
Emmanuel Fredon ◽  
Christine Gerardin ◽  
...  

Predominantly non-furanic commercial humins were used to prepare humin-based non-isocyanate polyurethane (NIPU) resins for wood panel adhesives. Pure humin-based NIPU resins and tannin–humin NIPU resins were prepared, the latter to upgrade the humins’ performance. Species in the raw humins and species formed in the NIPU resins were identified by Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI ToF) spectrometry and Fourier Transform Infrared (FTIR). Humins, fulvic acid and derivatives, humic acid and its fragments, some lignans present and furanic oligomers present formed NIPU linkages. Thermomechanical analysis (TMA) showed that as with other biomaterials-based NIPU resins, all these resins also showed two temperature peaks of curing, the first around 130 °C and the second around 220 °C. A decrease in the Modulus of Elasticity (MOE) between the two indicated that the first curing period corresponded to linear growth of the oligomers forming a physical entanglement network. This then disentangled, and the second corresponded to the formation of a chemical cross-linked network. This second peak was more evident for the tannin–humin NIPU resins. All the laboratory particleboard made and tested either bonded with pure humins or with tannin–humin NIPU adhesives satisfied well the internal bond strength requirements of the relevant standard for interior grade panels. The tannin–humin adhesives performed clearly better than the pure humins one.


2021 ◽  
pp. 1-1
Author(s):  
Yang Hu ◽  
Guihua Wen ◽  
Adriane Chapman ◽  
Pei Yang ◽  
Mingnan Luo ◽  
...  

2021 ◽  
Author(s):  
R. S. Tessinari ◽  
O. Alia ◽  
S. K. Joshi ◽  
D. Aktas ◽  
M. Clark ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Khoa Dang Nguyen ◽  
Takaomi Kobayashi

Chitin was chemically extracted from crab shells and then dissolved in N,N-dimethylacetamide (DMAc) solvent with lithium chloride (LiCl) at 3, 5, 7, and 10%. The concentrated chitin-DMAc/LiCl solutions were used for the preparation of chitin hydrogels by water vapor-induced phase inversion at 20°C. The coagulation process was investigated while altering the concentration of LiCl in the DMAc solution. The shear viscosity of the chitin solution increased with higher LiCl amounts and decreased when the concentration of LiCl was reduced by adding water to the chitin solution, implying high LiCl concentration delayed the coagulation of chitin solution in the presence of water. The viscoelasticity of the chitin solutions indicated the gel formation intensification was dependent on the dose of LiCl and chitin in the DMAc solution. After the chitin solution was coagulated, the resultant hydrogels had water contents of 387–461% and the tensile strength varied from 285 to 400 kPa when the concentration of LiCl in the hydrogel was adjusted to 3% and 7%, respectively. As for viscoelasticity, the complex modulus of the chitin hydrogels indicated that the increment of the LiCl concentration up to 7% formed the tight hydrogels. Atomic force microscopic (AFM) image revealed the formation of the entanglement network and larger domains of the aggregated chitin segments. However, the hydrogel prepared at 10% LiCl in DMAc solution exhibited weak mechanical properties due to the loose hydrogel networking caused by the strong aggregation of the chitin segments.


2020 ◽  
Vol 40 (9) ◽  
pp. 743-752
Author(s):  
Dietrich Gloger ◽  
Elisabeth Rossegger ◽  
Markus Gahleitner ◽  
Christina Wagner

AbstractProcessing isotactic polypropylene (iPP) from cast film into biaxially oriented polypropylene (BOPP) involves plastic drawing of a semi-crystalline morphology in the melting range of iPP, where the crystal phase is reduced and the polymer has high mobility. The literature claims that plastic drawing in general and at elevated temperatures in particular depends predominantly on the structure of the amorphous entanglement network. We investigated this aspect using laboratory-scale biaxial drawing experiments. Three iPP homopolymer types differing in chain isotacticity and molecular weight distribution were extruded into 200-μm-thick primary sheets using 10 different extrusion settings. The sheets were biaxially drawn on a laboratory stretcher at 157°C and 160°C, recording the respective stress-strain curves. These curves were evaluated according to a rubber elasticity model to obtain the network modulus, GN, of the entanglement network. The effects of iPP type, the extrusion parameters, the resulting cast film properties, and the draw temperature on GN are discussed.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 483
Author(s):  
Run Zhang ◽  
Suwei Wang ◽  
Jing Tian ◽  
Ke Chen ◽  
Ping Xue ◽  
...  

Modified ultra-high-molecular-weight polyethylene (UHMWPE) with calcium stearate (CS) and polyethylene wax (PEW) is a feasible method to improve the fluidity of materials because of the tense entanglement network formed by the extremely long molecular chains of UHMWPE, and a modified UHMWPE sheet was fabricated by compression molding technology. A Fourier-transform infrared spectroscopy test found that a new chemical bond was generated at 1097 cm−1 in the materials. Besides, further tests on the thermal, thermomechanical, mechanical, and shape memory properties of the samples were also conducted, which indicates that all properties are affected by the dimension and distribution of crystal regions. Moreover, the experimental results indicate that the addition of PEW and CS can effectively improve the mechanical properties. Additionally, the best comprehensive performance of the samples was obtained at the PEW content of 5 wt % and the CS content of 1 wt %. In addition, the effect of temperature on the shape memory properties of the samples was investigated, and the results indicate that the shape fixity ratio (Rf) and the shape recovery ratio (Rr) can reach 100% at 115 °C and 79% at 100 °C, respectively, which can contribute to the development of UHMWPE-based shape memory polymers.


Sign in / Sign up

Export Citation Format

Share Document