Tissue-specific localization and dynamic changes of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunohistochemistry

2011 ◽  
Vol 6 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ningguang Dong ◽  
Dong Pei ◽  
Weilun Yin
2014 ◽  
Vol 8 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Ningguang Dong ◽  
Ying Gao ◽  
Yanbin Hao ◽  
Weilun Yin ◽  
Dong Pei

2013 ◽  
Vol 64 (2) ◽  
Author(s):  
Zaidah Rahmat ◽  
Ma Nyuk Ling ◽  
Harikrishan Kulaveerasingam ◽  
Sharifah Shahrul Rabiah Syed Alwee ◽  
Meilina Ong Abdullah

The oil palm industry has been affected by abnormality in its clonal palm. Oil palm abnormality which arose from in vitro regeneration was first detected during flowering process. In this study, localized expression of an oil palm homologue of SOC1 gene was investigated using in situ RNA hybridization. Tissue specific localization expression of OPSOC1and OPSOC1-3’ showed that SOC1 is expressed in both normal and abnormal flower. The gene is highly expressed in abnormal oil palm flower throughout flower initiation and development. The role of SOC1 in inducing floral organ and its expression pattern provides a better understanding of regulation of OPSOC1 in normal and abnormal oil palm flower.


2000 ◽  
Vol 62 (5) ◽  
pp. 1141-1145 ◽  
Author(s):  
Karen W. Walters ◽  
C. Jo Corbin ◽  
Gary B. Anderson ◽  
Janet F. Roser ◽  
Alan J. Conley

1992 ◽  
Vol 219 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Frédérique Tesson ◽  
Isabelle Limon ◽  
Angelo Parini

2005 ◽  
Vol 35 (10) ◽  
pp. 2447-2456 ◽  
Author(s):  
John G Carman ◽  
Gordon Reese ◽  
Rodney J Fuller ◽  
Timnit Ghermay ◽  
Roger Timmis

Gymnospermous embryos are nourished by fluids secreted from the megagametophyte. During early embryony, these fluids occupy the newly formed corrosion cavity. We describe a novel method for extracting corrosion cavity fluid and provide chemical analyses based on extractions from approximately 120 000 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) megagametophytes. Levels of potassium, phosphorus, calcium, zinc, and iron were higher in corrosion cavity fluid than in whole tissue, but levels of sulphur and manganese were lower. Levels of cyclitols, sucrose equivalents, erythrose, and arabinose were many-fold higher in corrosion cavity fluid than in whole tissues. Ala, Ser, Arg, Glx, and NH3 exceeded 80 mmol/kg dry mass in corrosion cavity fluid. These levels were about 100-fold higher than those found in whole tissues. During early embryony, hormone levels in corrosion cavity fluid were higher than levels observed in whole megagametophytes by 120-fold for indole-3-acetic acid, 53-fold for abscisic acid, and 8- to 10-fold for cytokinins. Nutrient and hormone levels tended to be much higher in the corrosion cavity fluid than would have been predicted based on whole-tissue analyses. Dynamic changes in nutrient and hormone levels occurred over time in the corrosion cavity, and these changes may normalize embryony in situ.


2020 ◽  
Author(s):  
Jae Myoung Suh ◽  
Kwang-eun Kim ◽  
Isaac Park ◽  
Jeesoo Kim ◽  
Myeong-Gyun Kang ◽  
...  

Abstract Here we describe iSLET (in situ Secretory protein Labeling via ER-anchored TurboID) which labels secretory pathway proteins as they transit through the ER-lumen to enable dynamic tracking of tissue-specific secreted proteomes in vivo. We expressed iSLET in the mouse liver and demonstrated efficient in situ labeling of the liver-specific secreted proteome which could be tracked and identified within circulating blood plasma. iSLET is a versatile and powerful tool for studying spatiotemporal dynamics of secretory proteins, a valuable class of biomarkers and therapeutic targets.


2019 ◽  
Author(s):  
Moritz Senger ◽  
Viktor Eichmann ◽  
Konstantin Laun ◽  
Jifu Duan ◽  
Florian Wittkamp ◽  
...  

Hydrogenases are metalloenzymes that catalyse the interconversion of protons and molecular hydrogen, H2. [FeFe]-hydrogenases show particularly high rates of hydrogen turnover and have inspired numerous compounds for biomimetic H2 production. Two decades of research on the active site cofactor of [FeFe]-hydrogenases have put forward multiple models of the catalytic proceedings. In comparison, understanding of the catalytic proton transfer is poor. We were able to identify the amino acid residues forming a proton transfer pathway between active site cofactor and bulk solvent; however, the exact mechanism of catalytic proton transfer remained inconclusive. Here, we employ in situ IR difference spectroscopy on the [FeFe]-hydrogenase from Chlamydomonas reinhardtii evaluating dynamic changes in the hydrogen-bonding network upon catalytic proton transfer. Our analysis allows for a direct, molecular unique assignment to individual amino acid residues. We found that transient protonation changes of arginine and glutamic acid residues facilitate bidirectional proton transfer in [FeFe]-hydrogenases.<br>


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 845-858 ◽  
Author(s):  
G.H. Yee ◽  
R.O. Hynes

The integrins are a family of cell surface receptors for extracellular matrix proteins and counter-receptors on other cells. We have used the polymerase chain reaction to identify a novel integrin receptor beta subunit in Drosophila melanogaster. The deduced amino acid sequence of this subunit, which we have termed beta v (beta-neu), indicates that it has several unusual properties. The beta v subunit is roughly 33% identical with each of the previously sequenced vertebrate and Drosophila beta subunits and is lacking four of the 56 cysteine residues characteristic of most members of this protein family. The expression of the beta v gene is strikingly restricted. It is temporally regulated, with maximal expression occurring at 12–15 hours of embryonic development. In situ hybridization analyses and antibody localization on whole-mount embryos reveal that beta v expression is tissue-specific and confined to the developing midgut endoderm and its precursors during embryogenesis. Tissue specificity of expression is maintained through later stages of development as beta v transcripts are found exclusively in the larval midgut. Within this structure, beta v transcripts are especially concentrated in the cells of the midgut imaginal islands which give rise to the adult midgut.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1817-1828 ◽  
Author(s):  
P. Spann ◽  
M. Ginsburg ◽  
Z. Rangini ◽  
A. Fainsod ◽  
H. Eyal-Giladi ◽  
...  

Sax1 (previously CHox3) is a chicken homeobox gene belonging to the same homeobox gene family as the Drosophila NK1 and the honeybee HHO genes. Sax1 transcripts are present from stage 2 H&H until at least 5 days of embryonic development. However, specific localization of Sax1 transcripts could not be detected by in situ hybridization prior to stage 8-, when Sax1 transcripts are specifically localized in the neural plate, posterior to the hindbrain. From stages 8- to 15 H&H, Sax1 continues to be expressed only in the spinal part of the neural plate. The anterior border of Sax1 expression was found to be always in the transverse plane separating the youngest somite from the yet unsegmented mesodermal plate and to regress with similar dynamics to that of the segregation of the somites from the mesodermal plate. The posterior border of Sax1 expression coincides with the posterior end of the neural plate. In order to study a possible regulation of Sax1 expression by its neighboring tissues, several embryonic manipulation experiments were performed. These manipulations included: removal of somites, mesodermal plate or notochord and transplantation of a young ectopic notochord in the vicinity of the neural plate or transplantation of neural plate sections into the extraembryonic area. The results of these experiments revealed that the induction of the neural plate by the mesoderm has already occurred in full primitive streak embryos, after which Sax1 is autonomously regulated within the spinal part of the neural plate.


Sign in / Sign up

Export Citation Format

Share Document