Tissue Specific Localization Expression of SOC1 Gene in Oil Palm

2013 ◽  
Vol 64 (2) ◽  
Author(s):  
Zaidah Rahmat ◽  
Ma Nyuk Ling ◽  
Harikrishan Kulaveerasingam ◽  
Sharifah Shahrul Rabiah Syed Alwee ◽  
Meilina Ong Abdullah

The oil palm industry has been affected by abnormality in its clonal palm. Oil palm abnormality which arose from in vitro regeneration was first detected during flowering process. In this study, localized expression of an oil palm homologue of SOC1 gene was investigated using in situ RNA hybridization. Tissue specific localization expression of OPSOC1and OPSOC1-3’ showed that SOC1 is expressed in both normal and abnormal flower. The gene is highly expressed in abnormal oil palm flower throughout flower initiation and development. The role of SOC1 in inducing floral organ and its expression pattern provides a better understanding of regulation of OPSOC1 in normal and abnormal oil palm flower.

2021 ◽  
Vol 17 (5) ◽  
pp. 495-503
Author(s):  
Shamsiah Abdullah ◽  
Siti Nurain Roslan

One of the challenges related to propagation of Arenga pinnata is its lengthy period of seed dormancy. In this study, in vitro regeneration was carried out to determine the effect of hormonal treatment on the embryo explant of Arenga pinnata. Embryos were surface sterilized and cultured into different media supplemented with various hormones concentrations and combinations. Each treatment contained of Kinetin (KN) hormone (1.0, 2.0, and 3.0 mg/l) and in combination with indole-3-acetic acid (IAA) of 0.1, 0.2, 0.3 mg/l. The height of plumule and length of radical was observed and recorded. Treatment 8 (3 mg/ml KN + 0.1 mg/ml IAA) showed 59.09% in plumule height increment while treatment 4 (1 mg/ml KN + 0.3 mg/ml IAA) showed the highest radical increments with 93.62%. The knowledge gained in this study consequently helps us to better understand the role of KN and IAA in the in vitro regeneration protocol. Since in vitro method able to produce higher number of in vitro seedlings at one time, it is important to establish the in vitro regeneration protocol for this plant.


2020 ◽  
Author(s):  
Tong Zhao ◽  
Alma Piñeyro-Nelson ◽  
Qianxia Yu ◽  
Xiaoying Hu ◽  
Huanfang Liu ◽  
...  

Abstract Background:The flower of Hedychium coronarium possesses highly specialized floral organs: a synsepalous calyx, petaloid staminodes and a labellum. The formation of these organs is controlled by two gene categories: floral organ identity genes and organ boundary genes, which may function individually or jointly during flower development. Although the floral organogenesis of H. coronarium has been studied at the morphological level, the underlying molecular mechanisms involved in its floral development still remain poorly understood. In addition, previous works analyzing the role of MADS-box genes in controlling floral organ specification in some Zingiberaceae did not address the molecular mechanisms involved in the formation of particular organ morphologies that emerge later in flower development, such as the synsepalous calyx formed through intercalary growth of adjacent sepals. Results:Here, we used comparative transcriptomics combined with Real-time quantitative PCR and mRNA in situ hybridization to investigate gene expression patterns of ABC-class genes in H. coronarium flowers, as well as the homolog of the organ boundary gene PETAL LOSS (HcPTL). qRT-PCR detection showed that HcAP3 and HcAG were expressed in both the petaloid staminode and the fertile stamen. mRNA in situ hybridization showed that HcPTL was expressed in developing meristems, including cincinnus primordia, floral primordia, common primordia and almost all new initiating floral organ primordia.Conclusions:Our studies found that stamen/petal identity or stamen fertility in H. coronarium was not necessarily correlated with the differential expression of HcAP3 and HcAG. We also found a novel spatio-temporal expression pattern for HcPTL mRNA, suggesting it may have evolved a lineage-specific role in the morphogenesis of the Hedychium flower. Our study provides a new transcriptome reference and a functional hypothesis regarding the role of a boundary gene in organ fusion that should be further addressed through phylogenetic analyzes of this gene, as well as functional studies.


1995 ◽  
Vol 9 (3) ◽  
pp. 255-269 ◽  
Author(s):  
G.H. Bowden

Models of the caries process have made significant contributions toward defining the roles of bacteria in caries. Microbiologists use a variety of in vitro systems to model aspects of the caries process. Also, in situ models in humans provide information on the microbiology of caries in vivo. These models do not involve the entire process leading to natural caries; consequently, the results from such studies are used to deduce the roles of bacteria in natural caries. Therefore, they can be described as Inferential Caries Models. In contrast, animal models and some clinical trials in humans involve natural caries and can be described as Complete Caries Models. Furthermore, these models are used in two distinct ways. They can be used as Exploratory Models to explore different aspects of the caries process, or as Test Models to determine the effects of anticaries agents. This dichotomy in approach to the use of caries models results in modification of the models to suit a particular role. For example, if we consider Exploratory Models, the in situ appliance in humans is superior to others for analyzing the microbiology of plaque development and demineralization in vivo. The chemostat and biofilm models are excellent for exploring factors influencing bacterial interactions. Both models can also be used as Test Models. The in situ model has been used to test the effects of fluoride on the microflora and demineralization, while the chemostat and biofilm models allow for the testing of antibacterial agents. Each model has its advantages and disadvantages and role in analysis of the caries process. Selection of the model depends on the scientific question posed and the limitations imposed by the conditions available for the study.


2021 ◽  
Author(s):  
Maddalena del Gallo ◽  
Amedeo Mignini ◽  
Giulio Moretti ◽  
Marika Pellegrini ◽  
Paola Cacchio

<p>CO<sub>2</sub> emissions triggered by anthropogenic and natural activities contribute to climate change, one of the current environmental threats of public and scientific concern. At present, microbially-induced biomineralization of CO<sub>2</sub> by calcium carbonate (CaCO<sub>3</sub>) is one of the highly topical study subjects as carbon stabilization process. In the present study we focused our attention on the calcifying bacteria of “living rocks”. The origin of these concretions, composed by a silicate skeleton of quartz and feldspars, merged by massive carbonate concrete, has so far been recognized as abiotic. Within this study we investigated the role of calcifying bacteria in their formation of these concretions and we isolated and characterized the species with CaCO<sub>3</sub> precipitation abilities. Concretions were sampled in Romania (Trovant) and Italy (Sibari and Rome). Samples were first analyzed for their culturable microflora (i.e. isolation, CaCO<sub>3 </sub>precipitation capability and molecular characterization). Then, in vitro regeneration tests were carried out to confirm the contribution of bacteria in the formation of these erratic masses. Moreover, natural samples and bioliths regenerated in vitro were (i) observed and analyzed by scanning electron microscopy (SEM-EDS) and (ii) characterized at molecular level by DNA extraction and 16S rRNA analysis (V3-V4 regions). By isolating and characterizing the culturable microflora, we obtained 19 calcifying isolates, with different morphological, bacteriological and mineral precipitation properties. These evidences have given a first relevant contribution for the definition of the biotic role to the formation of these concretions. These evidences were confirmed by the efficient in vitro regeneration and SEM-EDS analysis. The molecular identification of the isolates and the comparison of the data obtained from the Illumina sequencing with those present in the literature, allowed us to hypothesize the genera that most likely contributed to the formation of these concretions. The results obtained provide a good scientific basis for further studies, which should be directed towards the use of isolates in studies of environmental and socio-economic relevance. Several studies demonstrate that microbially mediated biomineralization has the potential to capture and sequester carbon. Calcium carbonate, is a stable pool of carbon and is an effective sealant to prevent CO<sub>2</sub> release back into the atmosphere.</p>


1977 ◽  
Vol 232 (3) ◽  
pp. E336
Author(s):  
J T Pento ◽  
L C Waite ◽  
P J Tracy ◽  
A D Kenny

The role of parathyroid hormone (PTH) in the adaptive response in gut calcium transport to calcium deprivation has been studied in the rat using both the in vitro everted duodenal sac and the in situ ligated duodenal segment technique. Intact or parathyroidectomized (PTX) young rats were placed on a low calcium (0.01%) diet for 7-, 14-, or 21-day adaptation periods and compared with control rats maintained on a high calcium (1.5%) diet. Prior PTX (3 days before the start of the adaptation period) abolished the adaptive response (enhanced calcium transport) induced by calcium deprivation for a 7-day adaptation period, but did not abolish a response after a 21-day period. A 14-day adaptation period gave equivocal results. It is concluded that PTH appears to be necessary for short-term (7-day) adaptation, but not for long-term (21-day) adaptation to calcium deprivation. However, if accessory parathyroid tissue is present, the data could be interpreted differently: the essentiality of PTH for the adaptive response might be independent of the length of the adaptation period. The data also contribute to a possible resolution of the controversy concerning the involvement of PTH in the regulation of intestinal calcium transport in the rat.


1980 ◽  
Vol 151 (4) ◽  
pp. 984-989 ◽  
Author(s):  
V Schirrmacher ◽  
R Cheingsong-Popov ◽  
H Arnheiter

Murine hepatocytes, isolated by an in situ collagenase-perfusion technique and cultured in Petri dishes, were shown to form rosettes with liver-metastasizing syngeneic tumor cells. Pretreatment of the tumor cells with neuraminidase generally increased the binding, whereas pretreatment of the liver cells with neuraminidase abolished the binding completely. The tumor-cell binding may be mediated by the previously described lectin-like receptor of hepatocytes that also was sensitive to neuraminidase treatment and that bound desialylated cells better than normal cells. Anti-H-2 sera could efficiently inhibit the rosette formation of metastatic tumor cells with the hepatocytes, which points to a possible role of H-2 molecules in this interaction of neoplastic and normal cells.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lulu Wang ◽  
Yi Li ◽  
Xingyue Jin ◽  
Liping Liu ◽  
Xiaozhuan Dai ◽  
...  

AbstractProper flower development is essential for sexual reproductive success and the setting of fruits and seeds. The availability of a high quality genome sequence for pineapple makes it an excellent model for studying fruit and floral organ development. In this study, we sequenced 27 different pineapple floral samples and integrated nine published RNA-seq datasets to generate tissue- and stage-specific transcriptomic profiles. Pairwise comparisons and weighted gene co-expression network analysis successfully identified ovule-, stamen-, petal- and fruit-specific modules as well as hub genes involved in ovule, fruit and petal development. In situ hybridization confirmed the enriched expression of six genes in developing ovules and stamens. Mutant characterization and complementation analysis revealed the important role of the subtilase gene AcSBT1.8 in petal development. This work provides an important genomic resource for functional analysis of pineapple floral organ growth and fruit development and sheds light on molecular networks underlying pineapple reproductive organ growth.


2002 ◽  
Vol 70 (1) ◽  
pp. 286-291 ◽  
Author(s):  
Christian Fritz ◽  
Silvia Maass ◽  
Andreas Kreft ◽  
Franz-Christoph Bange

ABSTRACT Mycobacterium bovis BCG, the only presently available vaccine against tuberculosis, was obtained from virulent M. bovis after serial passages in vitro. The vaccine strain retained at least some of its original virulence, as it persists in immune-competent hosts and occasionally may cause fatal disease in immune-deficient hosts. Mycobacterial persistence in vivo is thought to depend on anaerobic metabolism, an apparent paradox since all mycobacteria are obligate aerobes. Here we report that M. bovis BCG lacking anaerobic nitrate reductase (NarGHJI), an enzyme essential for nitrate respiration, failed to persist in the lungs, liver, and kidneys of immune-competent (BALB/c) mice. In immune-deficient (SCID) mice, however, bacilli caused chronic infection despite disruption of narG, even if growth of the mutant was severely impaired in lungs, liver, and kidneys. Persistence and growth of BCG in the spleens of either mouse strain appeared largely unaffected by lack of anaerobic nitrate reductase, indicating that the role of the enzyme in pathogenesis is tissue specific. These data suggest first that anaerobic nitrate reduction is essential for metabolism of M. bovis BCG in immune-competent but not immune-deficient mice and second that its role in mycobacterial disease is tissue specific, both of which are observations with important implications for pathogenesis of mycobacteria and vaccine development.


2020 ◽  
Author(s):  
Periklis Katopodis ◽  
Rachel Kerslake ◽  
Athanasios Zikopoulos ◽  
Nefeli Eirini Beri ◽  
Vladimir Anikin

Abstract Background The p38MAPK family of Mitogen Activated Protein Kinases are a group of signalling molecules involved in cell growth, survival, proliferation and differentiation. The widely studied p38α isoform is ubiquitously expressed and is implicated in a number of cancer pathologies, as are p38γ and p38δ. However, the mechanistic role of the isoform, p38β, remains fairly elusive. Recent studies suggest a possible role of p38β in both breast and endometrial cancer with research suggesting involvement in bone metastasis and cancer cell survival. Female tissue specific cancers such as breast, endometrial, uterine and ovary account for over 3,000,000 cancer related incidents annually; advancements in therapeutics and treatment however require a deeper understanding of the molecular aetiology associated with these diseases. This study provides an overview of the MAPK signalling molecule p38β (MAPK11) in female cancers using an in-silico approach. Methods A detailed gene expression and methylation analysis was performed using datasets from cBioportal, CanSar and MEXPRESS. Breast, Uterine Endometrial, Cervical, Ovarian and Uterine Carcinosarcoma TCGA cancer datasets were used and analysed.Results Data using cBioportal and CanSAR suggest that expression of p38β is lower in cancers: BRCA, UCEC, UCS, CESC and OV compared to normal tissue. Methylation data from SMART and MEXPRESS indicate significant probe level variation of CpG island methylation status of the gene MAPK11. Analysis of the genes’ two CpG islands shows that the gene was hypermethylated in the CpG1 with increased methylation seen in BRCA, CESC and UCEC cancer data sets with a slight increase of expression recorded in cancer samples. CpG2 exhibited hypomethylation with no significant difference between samples and high levels of expression. Further analysis from MEXPRESS revealed no significance between probe methylation and altered levels of expression. In addition, no difference in the expression of BRCA oestrogen/progesterone/HER2 status was seen. Conclusion This data provides an overview of the expression of p38β in female tissue specific cancers, showing a decrease in expression of the gene in BRCA, UCEC, CESC, UCS and OV, increasing the understanding of p38β MAPK expression and offering insight for future in-vitro investigation and therapeutic application.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Hua ◽  
Dongliang Wang ◽  
Lin Zhao ◽  
Zhihui Hong ◽  
Kairu Ni ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is a malignancy with considerable morbidity and mortality. Abnormal metabolism is a hallmark of cancer; however, the mechanism of glycolysis regulation in NSCLC progression is not completely understood. Recent studies suggest that some dysregulated long non-coding RNAs (lncRNAs) play important roles in tumor metabolic reprogramming. Methods To identify glycolysis-associated-lncRNAs in NSCLC, we compared RNA-sequencing results between high 18F-fluorodeoxyglucose (FDG)-uptake NSCLC tissues and paired paratumor tissues. The transcript abundance of AL355338 in 80 pairs of clinical samples was evaluated by quantitative real-time PCR assay and fluorescence in situ hybridization. The biological role of AL355338 on NSCLC cells were evaluated by functional experiments in vitro and in vivo. Moreover, RNA pull-down, mass spectrometry and RNA immunoprecipitation (RIP) assays were used to identify the protein interacted with AL355338. Co-immunoprecipitation, in situ proximity ligation assays and western blotting were applied to define the potential downstream pathways of AL355338. Results AL355338 was an upregulated glycolysis-associated lncRNA in NSCLC. Functional assays revealed that AL355338 was critical for promoting aerobic glycolysis and NSCLC progression. Mechanistic investigations showed that AL355338 directly bound with alpha-enolase (ENO1) and enhanced the protein’s stability by modulating its degradation and ubiquitination. A positive correlation was observed between AL355338 and ENO1 in NSCLC, and ENO1 was subsequently confirmed to be responsible for the oncogenic role of AL355338. Furthermore, AL355338 was capable of modulating ENO1/EGFR complex interaction and further activating EGFR-AKT signaling. Conclusions This study indicates that AL355338 confers an aggressive phenotype to NSCLC, and targeting it might be an effective therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document