scholarly journals Erratum to: Investigation on the Flexural Creep Stiffness Behavior of PC–ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

JOM ◽  
2017 ◽  
Vol 69 (3) ◽  
pp. 612-612
Author(s):  
Omar Ahmed Mohamed ◽  
Syed Hasan Masood ◽  
Jahar Lal Bhowmik
2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2021 ◽  
Vol 349 ◽  
pp. 01008
Author(s):  
Nikolaos A. Fountas ◽  
Ioannis Papantoniou ◽  
John D. Kechagias ◽  
Dimitrios E. Manolakos ◽  
Nikolaos M. Vaxevanidis

The properties of fused deposition modeling (FDM) products exhibit strong dependence on process parameters which may be improved by setting suitable levels for parameters related to FDM. Anisotropic and brittle nature of 3D-printed components makes it essential to investigate the effect of FDM control parameters to different performance metrics related to resistance for improving strength of functional parts. In this work the flexural strength of polyethylene terephthalate glycol (PET-G) is examined under by altering the levels of different 3D-printing parameters such as layer height, infill density, deposition angle, printing speed and printing temperature. A response surface experiment was established having 27 experimental runs to obtain the results for flexural strength (MPa) and to further investigate the effect of each control parameter on the response by studying the results using statistical analysis. The experiments were conducted as per the ASTM D790 standard. The regression model generated for flexural strength adequately explains the variation of FDM control parameters on flexural strength and thus, it can be implemented to find optimal parameter settings with the use of either an intelligent algorithm, or neural network.


Sign in / Sign up

Export Citation Format

Share Document