Influence of Shielding Gas Composition on Structure and Mechanical Properties of Wire and Arc Additive Manufactured Inconel 625

JOM ◽  
2018 ◽  
Vol 71 (2) ◽  
pp. 703-708 ◽  
Author(s):  
Ivan Jurić ◽  
Ivica Garašić ◽  
Matija Bušić ◽  
Zoran Kožuh
Author(s):  
Augusta Ijeoma Ekpemogu ◽  
Olamide Emmanuel Ariwoola ◽  
Akeem Abiodun Rasheed ◽  
Oladipupo Akinleye Ogundele ◽  
Taiwo Ebenezer Abioye ◽  
...  

In this work, gas metal arc welding of AISI 304 stainless steel at varying compositions of argon-CO2 shielding environment was performed using an established optimum parametric combination. Thereafter, investigations on the microstructure of the welded joints and mechanical properties of the weldments were carried out. Weldments of excellent surface quality that are void of spatters and pores were obtained when the shielding gas composition (wt.%) range is between 100% argon and 75% argon - 25% CO2. Increasing percentage composition of CO2 beyond 25% resulted in irregular bead formation characterized with spatters and pores. The hardness of the welded joint became significantly high as the CO2 composition in the shielding gas increased. The highest value of 310 HV was obtained when the shielding gas composition was 5% argon- 95% CO2. The least (220 HV) was obtained when the shielding gas was 100% argon. High ultimate tensile strength (596 - 378 MPa) was achieved when the shielding gas composition range is between 100% argon and 75% argon-25% CO2. The UTS dropped significantly as the CO2 composition in the shielding gas increased beyond 25%. It decreased from 336 MPa at 70% argon-30% CO2 shielding gas composition to 133 MPa when 100% CO2 was utilized as the shielding gas. At the end, the effects of the CO2 addition and suitable composition of CO2 addition to argon shielding environment during GMAW of AISI 304 stainless steel have been established.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 524
Author(s):  
Maider Arana ◽  
Eneko Ukar ◽  
Iker Rodriguez ◽  
Amaia Iturrioz ◽  
Pedro Alvarez

With the advent of disruptive additive manufacturing (AM), there is an increasing interest and demand of high mechanical property aluminium parts built directly by these technologies. This has led to the need for continuous improvement of AM technologies and processes to obtain the best properties in aluminium samples and develop new alloys. This study has demonstrated that porosity can be reduced below 0.035% in area in Al-Mg samples manufactured by CMT-based WAAM with commercial filler metal wires by selecting the correct shielding gas, gas flow rate, and deposition strategy (hatching or circling). Three phase Ar+O2+N2O mixtures (Stargold®) are favourable when the hatching deposition strategy is applied leading to wall thickness around 6 mm. The application of circling strategy (torch movement with overlapped circles along the welding direction) enables the even build-up of layers with slightly thicker thickness (8 mm). In this case, Ar shielding gas can effectively reduce porosity if proper flow is provided through the torch. Reduced gas flows (lower than 30 Lmin) enhance porosity, especially in long tracks (longer than 90 mm) due to local heat accumulation. Surprisingly, rather high porosity levels (up to 2.86 area %) obtained in the worst conditions, had a reduced impact on the static tensile test mechanical properties, and yield stress over 110 MPa, tensile strength over 270 MPa, and elongation larger than 27% were achieved either for Ar circling, Ar hatching, or Stargold® hatching building conditions. In all cases anisotropy was lower than 11%, and this was reduced to 9% for the most appropriate shielding conditions. Current results show that due to the selected layer height and deposition parameters there was a complete re-melting of the previous layer and a thermal treatment on the prior bottom layer that refined the grain size removing the original dendritic and elongated structure. Under these conditions, the minimum reported anisotropy levels can be achieved.


2018 ◽  
Vol 216 ◽  
pp. 03001 ◽  
Author(s):  
Evgeny Ivanayskiy ◽  
Aleksei Ishkov ◽  
Aleksandr Ivanayskiy ◽  
Iakov Ochakovskii

The paper studies the influence of shielding gas on the composition and the structure of weld joint metal of 30MnB5 steel applied in essential parts of automobiles and tractors. The welding was performed in inert, oxidizing and reducing atmospheres. It was established that TIG welding with argon used as shielding gas did not provide the required mechanical properties when using conventional welding materials. Carbon dioxide during MAG welding caused partial burning of alloying elements. Carbon monoxide used as shielding gas was proved to form reducing atmosphere enabling to obtain chemical composition close to the base metal composition. Metallographic examinations were carried out. The obtained results provided full-strength weld, as well as the required reliability and durability of welded components and joints.


Sign in / Sign up

Export Citation Format

Share Document