Effect of Jet Milling on HDH CP-Ti Powders: Microstructure and Properties

JOM ◽  
2021 ◽  
Author(s):  
Qiying Tao ◽  
Wangwang Ding ◽  
Gang Chen ◽  
Xuanhui Qu ◽  
Lihui Han ◽  
...  
2015 ◽  
Vol 817 ◽  
pp. 604-609
Author(s):  
Jie Wu ◽  
Lei Xu ◽  
Zheng Guan Lu ◽  
Rui Peng Guo ◽  
Yu You Cui ◽  
...  

Pre-alloyed powder of Ti-47Al-2Cr-2Nb-0.15B was prepared by a gas atomization process and powder metallurgy (PM) γ-TiAl alloys were made through a hot isostatic pressed (HIPed) route. The atomized powders were canned in containers, degassed, sealed, and HIPed. Effect of two different canning materials (mild steel and commercial pure titanium (CP-Ti)) on the microstructure and properties of as-HIPed γ-TiAl alloy were discussed. Due to the reaction between mild steel containers and γ-TiAl at relative high temperature (over 1230 °C), the γ-TiAl matrix is contaminated. CP-Ti canned γ-TiAl showed bigger yield and fracture strength than mild steel canned TiAl. PM γ-TiAl alloy parts having complex shape could be manufactured by the near net-shape process.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 231
Author(s):  
Anna Biedunkiewicz ◽  
Paweł Figiel ◽  
Dariusz Garbiec ◽  
Aleksei Obrosov ◽  
Mirosława Pawlyta ◽  
...  

This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young’s modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.


1987 ◽  
Vol 48 (C3) ◽  
pp. C3-643-C3-652 ◽  
Author(s):  
R. E. LEWIS ◽  
E. A. STARKE ◽  
Jr. ◽  
W. C. COONS ◽  
G. J. SHIFLET ◽  
...  

2020 ◽  
Vol 62 (7) ◽  
pp. 698-702
Author(s):  
Lin Yinghua ◽  
Wang Kaiming

2017 ◽  
Vol 54 (7) ◽  
pp. 448-468 ◽  
Author(s):  
Z. Sheng ◽  
X. Du ◽  
Y. Li ◽  
Y. Zhang ◽  
Z. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document