scholarly journals The minimal degree standard identity on MnE2 and MnE3

2020 ◽  
Vol 238 (1) ◽  
pp. 279-312
Author(s):  
Barbara Anna Balázs ◽  
Szabolcs Mészáros
2021 ◽  
Vol 15 (4) ◽  
pp. 277-281
Author(s):  
Geraldo de Assis Junior ◽  
Sergio Mota Alves

Author(s):  
D. C. L. Bessades ◽  
R. B. dos Santos ◽  
A. C. Vieira

Let [Formula: see text] be a field of characteristic zero and [Formula: see text] the algebra of [Formula: see text] matrices over [Formula: see text]. By the classical Amitsur–Levitzki theorem, it is well known that [Formula: see text] is the smallest degree of a standard polynomial identity of [Formula: see text]. A theorem due to Rowen shows that when the symplectic involution [Formula: see text] is considered, the standard polynomial of degree [Formula: see text] in symmetric variables is an identity of [Formula: see text]. This means that when only certain kinds of matrices are considered in the substitutions, the minimal degree of a standard identity may not remain being the same. In this paper, we present some results about the minimal degree of standard identities in skew or symmetric variables of odd degree of [Formula: see text] in the symplectic graded involution case. Along the way, we also present the minimal total degree of a double Capelli polynomial identity in symmetric variables of [Formula: see text] with transpose involution.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2002 ◽  
Vol 25 (3) ◽  
pp. 336-337 ◽  
Author(s):  
Zoltan Dienes ◽  
Josef Perner

We consider Perruchet & Vinter's (P&V's) central claim that all mental representations are conscious. P&V require some way of fixing their meaning of representation to avoid the claim becoming either obviously false or unfalsifiable. We use the framework of Dienes and Perner (1999) to provide a well-specified possible version of the claim, in which all representations of a minimal degree of explicitness are postulated to be conscious.


2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.


2004 ◽  
pp. 161-162
Author(s):  
Vesselin Drensky ◽  
Edward Formanek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document