scholarly journals Civilian Gunshot Injuries of the Spinal Cord: A Systematic Review of the Current Literature

2013 ◽  
Vol 471 (12) ◽  
pp. 3945-3955 ◽  
Author(s):  
Gursukhman S. Sidhu ◽  
Arvindera Ghag ◽  
Vanessa Prokuski ◽  
Alexander R. Vaccaro ◽  
Kristen E. Radcliff
Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 303
Author(s):  
Alessandro Picelli ◽  
Mirko Filippetti ◽  
Giorgio Sandrini ◽  
Cristina Tassorelli ◽  
Roberto De Icco ◽  
...  

Botulinum toxin type A (BoNT-A) represents a first-line treatment for spasticity, a common disabling consequence of many neurological diseases. Electrical stimulation of motor nerve endings has been reported to boost the effect of BoNT-A. To date, a wide range of stimulation protocols has been proposed in the literature. We conducted a systematic review of current literature on the protocols of electrical stimulation to boost the effect of BoNT-A injection in patients with spasticity. A systematic search using the MeSH terms “electric stimulation”, “muscle spasticity” and “botulinum toxins” and strings “electric stimulation [mh] OR electrical stimulation AND muscle spasticity [mh] OR spasticity AND botulinum toxins [mh] OR botulinum toxin type A” was conducted on PubMed, Scopus, PEDro and Cochrane library electronic databases. Full-text articles written in English and published from database inception to March 2021 were included. Data on patient characteristics, electrical stimulation protocols and outcome measures were collected. This systematic review provides a complete overview of current literature on the role of electrical stimulation to boost the effect of BoNT-A injection for spasticity, together with a critical discussion on its rationale based on the neurobiology of BoNT-A uptake.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e049882
Author(s):  
Jing Nong Liang ◽  
Savanna Budge ◽  
Austin Madriaga ◽  
Kara Meske ◽  
Derrick Nguyenton ◽  
...  

IntroductionReduced neuromuscular control due to altered neurophysiological functions of the central nervous system has been suggested to cause movement deficits in individuals with patellofemoral pain (PFP). However, the underlying neurophysiological measures of brain and spinal cord in this population remain to be poorly understood. The purpose of this systematic review is to evaluate the evidence for altered cortical and spinal cord functions in individuals with PFP.Methods and analysisThe protocol for conducting the review was prepared using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. We will systematically search the literature that examines cortical and spinal cord functions in individuals with PFP, aged 18–45 years. The studies for cross-sectional, prospective, longitudinal, case–control and randomised control trial designs will be included from the following databases: PubMed (MEDLINE), EMBASE and Web of Science. Only studies published in English prior to 1 February 2021 will be included. The risk of bias and quality assessment will be performed using National Institutes of Health’s Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. We will conduct meta-analysis of the data where appropriate. Narrative synthesis will be taken if a meta-analysis is not possible.Ethics and disseminationThis is a systematic review from the existing literature and does not require ethical approval. The results of this study will be published in a peer-reviewed journal in the field of rehabilitation medicine, sports/orthopaedic medicine or neurology, regardless of the outcome.PROSPERO registration numberCRD42020212128.


Spinal Cord ◽  
2021 ◽  
Author(s):  
Peter Francis Raguindin ◽  
Gion Fränkl ◽  
Oche Adam Itodo ◽  
Alessandro Bertolo ◽  
Ramona Maria Zeh ◽  
...  

Abstract Study design Systematic review and meta-analysis. Objective To determine the difference in cardiovascular risk factors (blood pressure, lipid profile, and markers of glucose metabolism and inflammation) according to the neurological level of spinal cord injury (SCI). Methods We searched 5 electronic databases from inception until July 4, 2020. Data were extracted by two independent reviewers using a pre-defined data collection form. The pooled effect estimate was computed using random-effects models, and heterogeneity was calculated using I2 statistic and chi-squared test (CRD42020166162). Results We screened 4863 abstracts, of which 47 studies with 3878 participants (3280 males, 526 females, 72 sex unknown) were included in the meta-analysis. Compared to paraplegia, individuals with tetraplegia had lower systolic and diastolic blood pressure (unadjusted weighted mean difference, −14.5 mmHg, 95% CI −19.2, −9.9; −7.0 mmHg 95% CI −9.2, −4.8, respectively), lower triglycerides (−10.9 mg/dL, 95% CI −19.7, −2.1), total cholesterol (−9.9 mg/dL, 95% CI −14.5, −5.4), high-density lipoprotein (−1.7 mg/dL, 95% CI −3.3, −0.2) and low-density lipoprotein (−5.8 mg/dL, 95% CI −9.0, −2.5). Comparing individuals with high- vs. low-thoracic SCI, persons with higher injury had lower systolic and diastolic blood pressure (−10.3 mmHg, 95% CI −13.4, −7.1; −5.3 mmHg 95% CI −7.5, −3.2, respectively), while no differences were found for low-density lipoprotein, serum glucose, insulin, and inflammation markers. High heterogeneity was partially explained by age, prevalent cardiovascular diseases and medication use, body mass index, sample size, and quality of studies. Conclusion In SCI individuals, the level of injury may be an additional non-modifiable cardiovascular risk factor. Future well-designed longitudinal studies with sufficient follow-up and providing sex-stratified analyses should confirm our findings and explore the role of SCI level in cardiovascular health and overall prognosis and survival.


Spinal Cord ◽  
2021 ◽  
Author(s):  
Paulo Henrique Ferreira de Araujo Barbosa ◽  
Joanne V. Glinsky ◽  
Emerson Fachin-Martins ◽  
Lisa A. Harvey

Sign in / Sign up

Export Citation Format

Share Document