Enhanced Lignin Biodegradation by a Laccase-Overexpressed White-Rot Fungus Polyporus brumalis in the Pretreatment of Wood Chips

2013 ◽  
Vol 171 (6) ◽  
pp. 1525-1534 ◽  
Author(s):  
Sun-Hwa Ryu ◽  
Myung-Kil Cho ◽  
Myungkil Kim ◽  
Sang-Min Jung ◽  
Jin-Ho Seo
Author(s):  
Jussi Kontro ◽  
Riku Maltari ◽  
Joona Mikkilä ◽  
Mika Kähkönen ◽  
Miia R. Mäkelä ◽  
...  

Utilization of lignin-rich side streams has been a focus of intensive studies recently. Combining biocatalytic methods with chemical treatments is a promising approach for sustainable modification of lignocellulosic waste streams. Laccases are catalysts in lignin biodegradation with proven applicability in industrial scale. Laccases directly oxidize lignin phenolic components, and their functional range can be expanded using low-molecular-weight compounds as mediators to include non-phenolic lignin structures. In this work, we studied in detail recombinant laccases from the selectively lignin-degrading white-rot fungus Obba rivulosa for their properties and evaluated their potential as industrial biocatalysts for the modification of wood lignin and lignin-like compounds. We screened and optimized various laccase mediator systems (LMSs) using lignin model compounds and applied the optimized reaction conditions to biorefinery-sourced technical lignin. In the presence of both N–OH-type and phenolic mediators, the O. rivulosa laccases were shown to selectively oxidize lignin in acidic reaction conditions, where a cosolvent is needed to enhance lignin solubility. In comparison to catalytic iron(III)–(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation systems, the syringyl-type lignin units were preferred in mediated biocatalytic oxidation systems.


2019 ◽  
Vol 7 (9) ◽  
pp. 304 ◽  
Author(s):  
Bo Ram Kang ◽  
Soo Bin Kim ◽  
Hyun A Song ◽  
Tae Kwon Lee

High-density polyethylene (HDPE) is a widely used organic polymer and an emerging pollutant, because it is very stable and nonbiodegradable. Several fungal species that produce delignifying enzymes are known to be promising degraders of recalcitrant polymers, but research on the decomposition of plastics is scarce. In this study, white rot fungus, Bjerkandera adusta TBB-03, was isolated and characterized for its ability to degrade HDPE under lignocellulose substrate treatment. Ash (Fraxinus rhynchophylla) wood chips were found to stimulate laccase production (activity was > 210 U/L after 10 days of cultivation), and subsequently used for HDPE degradation assay. After 90 days, cracks formed on the surface of HDPE samples treated with TBB-03 and ash wood chips in both liquid and solid states. Raman analysis showed that the amorphous structure of HDPE was degraded by enzymes produced by TBB-03. Overall, TBB-03 is a promising resource for the biodegradation of HDPE, and this work sheds light on further applications for fungus-based plastic degradation systems.


Holzforschung ◽  
2008 ◽  
Vol 62 (4) ◽  
Author(s):  
Marcos Paulo Vicentim ◽  
André Ferraz

Abstract The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 μm. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23° Schopper-Riegler).


2007 ◽  
Vol 97 (6) ◽  
pp. 1516-1522 ◽  
Author(s):  
Soo-Min Lee ◽  
Jae-Won Lee ◽  
Bon-Wook Koo ◽  
Myung-Kil Kim ◽  
Don-Ha Choi ◽  
...  

1998 ◽  
Vol 44 (7) ◽  
pp. 676-680 ◽  
Author(s):  
Orly Ardon ◽  
Zohar Kerem ◽  
Yitzhak Hadar

The white rot fungus Pleurotus ostreatus was grown in a chemically defined solid state fermentation system amended with cotton stalk extract (CSE).Treated cultures exhibited increased laccase activity as well as enhanced lignin mineralization. Mineralization of [14C]lignin initialized 4 days earlier in CSE-supplemented cultures than in control cultures. Total mineralization in the first 16 days was 15% in the CSE-treated cultures, compared with only 7% in the controls. Cotton stalk extract also contained compounds that serve as substrates for laccase purified from P. ostreatus as shown by oxygen consumption, as well as changes in the UV–visible spectrum.Key words: cotton, Pleurotusostreatus, white rot, laccase, lignin biodegradation.


2020 ◽  
Author(s):  
Jianqiao Wang ◽  
Tomohiro Suzuki ◽  
Hideo Dohra ◽  
Toshio Mori ◽  
Hirokazu Kawagishi ◽  
...  

Abstract Background Lignocellulosic biomass is an organic matrix composed of cellulose, hemicellulose, and lignin. In nature, lignin degradation by basidiomycetes is the key step in lignocellulose decay. The white-rot fungus Phanerochaete sordida YK-624 (YK-624) has been extensively studied due to its high lignin degradation ability. In our previous study, it was demonstrated that YK-624 can secrete lignin peroxidase and manganese peroxidase for lignin degradation. However, the underlying mechanism for lignin degradation by YK-624 remains unknown.Results Here, we analyzed YK-624 gene expression following growth under ligninolytic and nonligninolytic conditions and compared the differentially expressed genes in YK-624 to those in the model white-rot fungus P. chrysosporium by next-generation sequencing. More ligninolytic enzymes and lignin-degrading auxiliary enzymes were upregulated in YK-624. This might explain the high degradation efficiency of YK-624. In addition, the genes involved in energy metabolism pathways, such as the TCA cycle, oxidative phosphorylation, lipid metabolism, carbon metabolism and glycolysis, were upregulated under ligninolytic conditions in YK-624.Conclusions In the present study, the first differential gene expression analysis of YK-624 under ligninolytic and nonligninolytic conditions was reported. The results obtained in this study indicated that YK-624 produces more energy- and lignin-degrading enzymes for more efficient lignin biodegradation.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Fernando Masarin ◽  
André Ferraz

Abstract In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg−1 wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.


Sign in / Sign up

Export Citation Format

Share Document