Rapid Green Synthesis of Biogenic Silver Nanoparticles Using Cinnamomum tamala Leaf Extract and its Potential Antimicrobial Application Against Clinically Isolated Multidrug-Resistant Bacterial Strains

2020 ◽  
Vol 198 (2) ◽  
pp. 681-696 ◽  
Author(s):  
Shib Shankar Dash ◽  
Sovan Samanta ◽  
Sananda Dey ◽  
Biplab Giri ◽  
Sandeep Kumar Dash
RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22742-22757 ◽  
Author(s):  
Sudip Some ◽  
Biraj Sarkar ◽  
Kinkar Biswas ◽  
Tushar K. Jana ◽  
Debjoy Bhattacharjya ◽  
...  

We aimed to synthesise bio-molecule functionalized silver nanoparticles using leaf extract from mulberry variety S-1635 (Morus alba L.) and to explore its antibacterial effect on multidrug resistant gut bacteria isolated from natural infection observed from silkworm larvae.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Author(s):  
Joy James Costa ◽  
Hassan Hosseinzadeh ◽  
Dabasish Kumar Saha ◽  
Shihab Uddin Al Mahmud ◽  
Bhuiyan Mohammad Mahtab Uddin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document