scholarly journals Novel Evidence That Alternative Pathway of Complement Cascade Activation is Required for Optimal Homing and Engraftment of Hematopoietic Stem/progenitor Cells

Author(s):  
Mateusz Adamiak ◽  
Andrzej Ciechanowicz ◽  
Vira Chumak ◽  
Kamila Bujko ◽  
Janina Ratajczak ◽  
...  

AbstractWe reported in the past that activation of the third (C3) and fifth element (C5) of complement cascade (ComC) is required for a proper homing and engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs). Since myeloablative conditioning for transplantation triggers in recipient bone marrow (BM) state of sterile inflammation, we have become interested in the role of complement in this process and the potential involvement of alternative pathway of ComC activation. We noticed that factor B deficient mice (FB-KO) that do not activate properly alternative pathway, engraft poorly with BM cells from normal wild type (WT) mice. We observed defects both in homing and engraftment of transplanted HSPCs. To shed more light on these phenomena, we found that myeloablative lethal irradiation conditioning for transplantation activates purinergic signaling, ComC, and Nlrp3 inflammasome in WT mice, which is significantly impaired in FB-KO animals. Our proteomics analysis revealed that conditioned for transplantation lethally irradiated FB-KO compared to normal control animals have lower expression of several proteins involved in positive regulation of cell migration, trans-endothelial migration, immune system, cellular signaling protein, and metabolic pathways. Overall, our recent study further supports the role of innate immunity in homing and engraftment of HSPCs. Graphical Abstract

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 774-774
Author(s):  
Marcin Wysoczynski ◽  
Ryan Reca ◽  
Wu Wan ◽  
Magda Kucia ◽  
Marina Botto ◽  
...  

Abstract We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPC) by i) immunoglobulin (Ig)-dependent pathway and/or by ii) alternative Ig-independent pathway and, as result of this, iii) several potent bioactive CC anaphylatoxins (C3a, desArgC3a, C5a and desArgC5a) are released (Blood2003;101,3784; Blood2004;103,2071; Blood2005;105,40). To learn more on the role of CC and innate immunity in this process, we compared mobilization in mice that possess defects in CC activation by i) classical pathway (C1q−/−, Ig-deficient), ii) both classical and alternative pathway (C2fB−/−) and in animals iii) that do not generate CC-derived anaphylatoxins (C3−/−, C5−/−). For mobilization, we employed G-CSF and zymosan that activate classical and alternative pathways of CC, respectively. First, we found by ELISA that CC activation in fact correlates with the level of HSPC mobilization. Next, studies in mice deficient in CC activation revealed that CC plays both pivotal and pleiotropic roles in this process. Accordingly, while C1q−/− and C3−/− mice turned out to be easy mobilizers, mobilization was very poor in Ig-deficient, C2fB−/− and C5−/− mice that demonstrate that C3 and C5 cleavage fragments differently control the mobilization of HSPC. To explain this at molecular level, we found that C3 cleavage fragments (C3a, desArgC3a) directly interact with HSPC and increase their responsiveness to SDF-1 gradient and thus prevent uncontrolled egress of HSPC from BM. It explains why C1q−/− and C3−/− mice that do not generate C3 cleavage fragments in BM release easily HSPC into circulation. In contrast, C5 cleavage fragments (C5a, desArgC5a) increase permeability of BM-endothelium and thus are crucial for the egress of HSPC from BM to occur. This explains why mice that do not activate efficient CC such as Ig-deficient, C2fB−/− and C5−/− animals are poor mobilizers. We conclude that the mobilization of HSPC is i) dependent on C activation by the classical or alternative pathway and balanced differently by C3 and C5 cleavage fragments that enhance retention or promote egress of HSPC respectively. Thus, modulation of C activation in BM may help to develop new more efficient strategies for both HSPC mobilization and their homing/engraftment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 367-367
Author(s):  
Marcin Wysoczynski ◽  
HakMo Lee ◽  
Rui Liu ◽  
Wan Wu ◽  
Janina Ratajczak, ◽  
...  

Abstract Abstract 367 We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) by immunoglobulin (Ig)-dependent pathway and/or by alternative Ig-independent pathway as seen during G-CSF- or Zymosan mobilization, respectively. As a result, several potent bioactive CC anaphylatoxins (C3 and C5 cleavage fragments) are released that regulate egress of HSPCs (Blood 2003;101,3784; Blood 2004;103,2071; Blood 2005;105,40, Leukemia 2009; in press.). This explains why: i) NOD/SCID and RAG-/- animals that do not activate the Ig-dependent CC classical pathway; ii) C2fB-/- and C3-/- mice that do not activate the classical and alternative CC pathways; and iii) C5-/- mice that do not activate the distal pathway of CC are all poor G-CSF- and/or Zymosan mobilizers. In this study, we evaluated the role of CC in mobilization induced by CXCR4 antagonist AMD3100. We noticed that all CC activation-deficient mice mentioned above, except C5-/- mice, mobilize normally in response to AMD3100 administration. Accordingly, the number of mobilized CD34- SKL cells, leucocytes, and CFU-GM clonogeneic progenitors in mutant mice was similar to wt littermates. More important we observed that AMD3100 mobilization of HSPCs was preceded by a massive egress of leucocytes from BM and that AMD3100 was able to stimulate in these cells i) phosphorylation of MAPKp42/44 and ii) secretion of MMP-9. At the same time, ELISA data to detect CC activation revealed that serum levels of CC cleavage fragments, which were low in the initial phase of AMD3100 mobilization during granulocyte egress, become elevated later during HSPC egress. Thus, our data show that despite a fact that G-CSF and AMD3100 mobilize HSPCs by involving different mechanisms, activation of CC is a common phenomenon occurring during mobilization induced by both compounds. This further supports a pivotal role of CC activation in the egress of HSPCs from BM; however, both compounds activate CC differently. While G-CSF administration initiates CC activation at its proximal C1q-C3 level, AMD3100 induces CC activation at the distal C5 level, pointing to a crucial role of C5 cleavage in executing mobilization. To support this, all mice employed in our studies that display defects in activation of proximal stages of CC (NOD/SCID, RAG, C2fB-/-, and C3-/-) are normal AMD3100 mobilizers. However, C5 is cleavage required for mobilization occurs in the plasma of these animals latter on - directly by proteases released from AMD3100-stimulated granulocytes that egress from the BM as a first wave of mobilized cells. This compensatory mechanism cannot occur from obvious reasons in C5-/- mice. We conclude that AMD3100-directed mobilization similarly as G-CSF-induced one depends on activation of CC; however, AMD3100 in contrast to G-CSF activates CC at distal stages – directly by proteases released from mobilized/activated granulocytes. Cleavage of C5 and release of C5a and desArgC5a create a sinusoid-permissive environment in BM for HSPCs egress. This suggests involvement of both C5 cleavage fragments as well as a potential role of downstream elements of CC activation - membrane attack complex - MAC (C5b-C9) in stem cell mobilization. Therefore, some poor AMD3100 patient responders could possess a defect in activation of the distal steps of CC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1683-1683
Author(s):  
Mateusz Adamiak ◽  
Andrzej Ciechanowicz ◽  
Kamila Bujko ◽  
Katarzyna Brzeźniakiewicz-Janus ◽  
Janina Ratajczak ◽  
...  

Abstract Background. We reported in the past that activation of the third (C3) and fifth element (C5) of complement cascade (ComC) is required not only for mobilization of hematopoietic stem progenitor cells (HSPCs) but also for their proper homing and engraftment after transplantation to bone marrow (BM) (Leukemia 2012; 26:106-16). The ComC consists of zymogen proteins that become activated in a cascade-mediated manner by the i) classical, ii) mannan-binding lectin (MBL), or iii) alternative pathway. However, it is not clear which of these pathways plays a crucial role in inducing state of sterile inflammation in recipient BM conditioned for transplantation. Interestingly, the alternative pathway of ComC activation, in contrast to the other two pathways, is not triggered by antibodies or specific structures expressed on the surface of invading microorganisms, but is continuously activated and "ticking" by the spontaneous hydrolysis of the third component of the ComC (C3), which is the most abundant complement protein present in blood plasma. This process of C3 hydrolysis is hyperactivated in response to tissue/organ damage and changes the structure of C3 in order to promote binding of factor B (FB) that initiates the amplification process by which more C3b molecules and C3b-Bb convertases are created responsible for activation of the ComC. We also recently demonstrated that homing and engraftment of HSPCs to BM is mediated by activation of innate immunity pattern recognition receptor Nlrp3 inflammasome (Leukemia 2020; 34:1512-1523). On the other hand reactive oxygen species (ROS) are known activators of Nlrp3 inflammasome. Hypothesis. We hypothesized that sensitive and "continuously ticking" in peripheral blood (PB) alternative pathway of ComC activation facilitates homing and engraftment of HSPCs in response to myeloablation triggered sterile inflammation of hematopoietic microenvironment in donor BM. We also hypothesized that this depends on the activation of the Nlrp3 inflammasome in ROS-dependent manner. Materials and Methods. Activation of ComC and Nlrp3 inflammasome in BM of conditioned for hematopoietic transplantation by lethal irradiation mice was evaluated by C5a ELISA assay and immunofluorescence glow assay measuring activation of Nlrp3 inflammasome product that is activated caspase-1, respectively. We also run shotgun proteomic analysis with BM conditioned media and BMMNCs extracts. The release of ROS was measured by a colorimetric assay. To assess the involvement of alternative pathway of ComC activation, we performed homing and engraftment experiments in wild-type (WT) and FB-deficient mice, that have defect in alternative pathway of ComC activation. FB-KO and WT animals were transplanted with WT BMMNC. We also analyzed changes in the BM microenvironment in response to lethal irradiation in WT and FB-KO mice at mRNA and protein level. Results. We demonstrate for a first time that conditioning for transplantation by myeloablative irradiation induces in BM state of sterile inflammation reflected by activation of ComC, the release of reactive oxygen species (ROS), and activation of Nlrp3 inflammasome in ROS-dependent manner. Moreover, as compared to WT animals, all these pathways were significantly inhibited in FB-KO mice. As a result of this FB-KO animals displayed defective homing and engraftment after transplantation of WT BMMNC. This correlated at molecular level by the decreased expression of cell adhesion molecules and group of structural proteins involved in so called "docking structures" necessary for cell migration and homing as well as for Nlrp3 inflammasome complex and caspase 1, 2, 4 and 6. Moreover, FB-KO mice demonstrated lower level of SDF-1 and KL in BM after myeloablative conditioning for transplantation. Conclusions. We provide for a first time an evidence that myeloablative conditioning for transplantation by lethal irradiation activates in ComC-ROS-Nlrp3 inflammasome - dependent manner a state of sterile inflammation in the BM microenvironment, required for optimal homing and engraftment. This data also explains this phenomenon at molecular level and provides an evidence for a crucial involvement of alternative pathway of ComC activation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mariusz Z. Ratajczak ◽  
Magda Kucia

Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex’s actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3736-3736
Author(s):  
Tanabe Mikoto ◽  
Nguyen Hoang Maianh ◽  
Kohei Hosokawa ◽  
Noriharu Nakagawa ◽  
Luis Espinoza ◽  
...  

[Background] Glycosylphosphatidylinositol-anchored proteins (GPI-APs) on hematopoietic stem progenitor cells (HSPCs) may have some roles in the negative regulation of the HSPC commitment induced by inflammatory cytokines given the fact that progenies of GPI(-) HSPC are often detected in patients with immune-mediated bone marrow (BM) failure. CD109, one of the GPI-APs expressed by keratinocytes and HSPCs in humans, serves as a TGF-β co-receptor and is reported to inhibit TGF-β signaling in keratinocytes; however, the role of CD109 on HSPCs remains unknown. We previously demonstrated that TGF-β induced erythroid differentiation of TF-1 cells, a myeloid leukemia cell line that expresses CD109, in a dose-dependent manner and that knockout of the CD109 gene resulted in erythroid differentiation of TF-1 cells cultured in fetal bovine serum-containing medium, suggesting an inhibitory role of CD109 in the erythroid differentiation of HSPCs induced by low levels of TGF-β (Blood, 2018. 132 (Suppl.1) :3874). However, as most CD109 KO TF-1 cells changed into erythroid cells, they were unsuitable for investigating the role of CD109 in the erythroid differentiation induced by TGF-β. To overcome this issue, we prepared TF-1 cells and cord blood (CB) HSPCs in which the CD109 expression was transiently downregulated, and attempted to further clarify the role of CD109. [Methods] TF-1 cells and CD34+ cells isolated from CB mononuclear cells were treated with siRNA that was complementary to CD109 mRNA. CD109 knockdown cells were cultured for 4 days in serum-free medium supplemented with stem cell factor, thrombopoietin, and erythropoietin with or without TGF-β. In separate experiments, TF-1 cells were treated with phosphatidylinositol-specific phospholipase C (PIPL-C) treatment for 1 hour and were incubated in the presence or absence of TGF-β. CD109 KO TF-1 cells were incubated in serum-free medium (StemPro-34 SFM) for 14 days and their phenotype was determined using flow cytometry (FCM). The erythroid differentiation of the cells was assessed by testing the expression of glycophorin A (GPA) and iron staining. [Results] The down-regulation of CD109 in TF-1 cells by the siRNA treatment increased GPA expression in response to 12 ng/ml of TGF-β from 1.77% to 35.6%. The transient depletion of GPI-APs by PIPL-C also augmented the GPA expression induced by TGF-β from 1.27% to 6.77%. In both BM of healthy individuals and CB, CD109 was more abundantly expressed in Lin-CD34+CD38-CD90+CD45RA- hematopoietic stem cells (HSCs) than in Lin-CD34+CD38-CD90-CD45RA- multipotent progenitors (MPPs) and Lin-CD34+CD38+ HSPCs (Fig. 1). The treatment of CB cells with siRNA reduced the CD109 expression in Lin-CD34+CD38+ cells from 55.9% to 23.1%. TGF-β induced the expression of GPA in Lin-CD34+CD38+CD123-CD45RA- megakaryocyte-erythrocyte progenitor cells (MEPs) of CD109 knockdown cells to a greater degree than the control counterpart (Fig. 2). During 14-day serum-free culture, GPA-positive CD109 KO TF-1 cells died, and similarly to WT TF-1 cells, most surviving CD109 KO TF-1 cells were GPA-negative. TGF-β treatment induced erythroid differentiation in CD109 KO TF-1 cells to a greater degree than in WT TF-1 cells. [Conclusions] CD109 plays a key role in the inhibition of TF-1 erythroid differentiation in response to TGF-β. CD109 may suppress TGF-β signaling, and the lack of CD109 may make PIGA-mutated HSPCs more sensitive to TGF-β, thus leading to the preferential commitment of the mutant erythroid progenitor cells to mature red blood cells in immune-mediated BM failure. Disclosures Yamazaki: Novartis Pharma K.K.: Honoraria; Sanofi K.K.: Honoraria; Nippon Shinyaku Co., Ltd.: Honoraria. Nakao:Novartis Pharma K.K: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda Pharmaceutical Company Limited: Honoraria; Celgene: Honoraria; Ono Pharmaceutical: Honoraria; Chugai Pharmaceutical Co.,Ltd: Honoraria; Kyowa Kirin: Honoraria; Alaxion Pharmaceuticals: Honoraria; Ohtsuka Pharmaceutical: Honoraria; Daiichi-Sankyo Company, Limited: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; SynBio Pharmaceuticals: Consultancy.


2020 ◽  
Vol 16 (3) ◽  
pp. 313-325
Author(s):  
Monika Cymer ◽  
Katarzyna Brzezniakiewicz-Janus ◽  
Kamila Bujko ◽  
Arjun Thapa ◽  
Janina Ratajczak ◽  
...  

Abstract An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.


Sign in / Sign up

Export Citation Format

Share Document