scholarly journals Pannexin-1 channel “fuels” by releasing ATP from bone marrow cells a state of sterile inflammation required for optimal mobilization and homing of hematopoietic stem cells

2020 ◽  
Vol 16 (3) ◽  
pp. 313-325
Author(s):  
Monika Cymer ◽  
Katarzyna Brzezniakiewicz-Janus ◽  
Kamila Bujko ◽  
Arjun Thapa ◽  
Janina Ratajczak ◽  
...  

Abstract An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 600-600
Author(s):  
Manabu Matsunawa ◽  
Ryo Yamamoto ◽  
Masashi Sanada ◽  
Aiko Sato ◽  
Yusuke Shiozawa ◽  
...  

Abstract Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2221-2221
Author(s):  
Cyrus Khandanpour ◽  
Ulrich Duehrsen ◽  
Tarik Möröy

Abstract Exogenous toxic substances often cause the initiation and development of leukemia and lymphoma by acting as mutagens. N-ethyl-N-nitrosourea (ENU) is a paradigmatic example for such a substance, which introduces point mutations in the genome through DNA damage and repair pathways. ENU is widely used to experimentally induce T-cell lymphomas in mice. We have used ENU to investigate whether the hematopoietic transcription factor Gfi1 is required for lymphomagenesis. The Gfi1 gene was originally discovered as a proviral target gene and a series of experiments with transgenic mice had suggested a role of Gfi1 as a dominant oncogene with the ability to cooperate with Myc and Pim genes in the generation of T-cell lymphoma. In addition, Gfi1 deficient mice showed a defect in T-cell maturation but also aberration in myeloid differentiation and an accumulation of myelomonocytic cells. ENU was administered i.p. once a week for three weeks with a total dose of 300mg/kg to wild type (wt) and Gfi1 null mice. Wild type mice (12/12) predominantly developed T-cell tumors and rarely acute myeloid leukemia, as expected. However, only 2/8 Gfi1 −/− mice succumbed to lymphoid neoplasia; they rather showed a severe dysplasia of the bone marrow that was more pronounced than in wt controls. These changes in Gfi1 null mice were accompanied by a dramatic decrease of the LSK (Lin-, Sca1- and c-Kit+) bone marrow fraction that contains hematopoietic stem cells and by a higher percentage (18%) of bone marrow cells, not expressing any lineage markers (CD4, CD 8, Ter 119, Mac1, Gr1, B220, CD3). In particular, we found that the LSK subpopulation of Gfi1 deficient mice showed a noticeable increase in cells undergoing apoptosis suggesting a role of Gfi1 in hematopoietic stem cell survival. In addition, Gfi1−/− bone marrow cells and thymic T-cells were more sensitive to DNA damage such as radiation and exposure to ENU than their wt counterparts pointing to a role of Gfi1 in DNA damage response. Our results indicate that Gfi1 is required for development of T-cell tumors and that a loss of Gfi1 may sensitize hematopoietic cells and possibly hematopoietic stem cells for programmed cell death. Further studies have to show whether interfering with Gfi1 expression or function might represent a tool in the therapy of leukemia.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 307-307
Author(s):  
Sarah C Nabinger ◽  
Michihiro Kobayashi ◽  
Rui Gao ◽  
Sisi Chen ◽  
Chonghua Yao ◽  
...  

Abstract AML is thought to arise from leukemia stem cells (LSCs); however, recent evidence suggests that the transforming events may initially give rise to pre-leukemic hematopoietic stem cells (pre-leukemic HSCs), preceding the formation of fully transformed LSCs. Pre-leukemic HSCs have been shown to contribute to normal blood development and harbor a selective growth advantage compared to normal HSCs. Pre-leukemic HSCs can acquire subsequent mutations, and once differentiation capacity is impaired, leukemia emerges. Recently, acquired somatic TP53 mutations, including p53R248W and p53R273H, were identified in healthy individuals as well as AML patients, suggesting that TP53 mutations may be early events in the pathogenesis of AML. We found that p53R248W HSCs showed a multi-lineage repopulation advantage over WT HSCs in transplantation experiments, demonstrating that mutant p53 confers a pre-leukemic phenotype in murine HSCs. Although TP53 mutations are limited in AML, TP53 mutations do co-exist with mutations of epigenetic regulator, ASXL-1, or receptor tyrosine kinase, FLT3, in AML. Mutations in Asxl-1 are present in ~10-30% of patients with myeloid malignancies and confer poor prognosis. Loss of Asxl-1 in the hematopoietic compartment leads to a myelodysplastic-like syndrome in mice and reduced stem cell self-renewal. Internal tandem duplications in Flt3 (Flt3-ITD) occur in ~30% of AML patients and are associated with adverse clinical outcome. Flt3-ITD-positive mice develop a myeloproliferative neoplasm (MPN) and HSCs expressing Flt3-ITD have decreased self-renewal capabilities. We hypothesize that mutant p53 drives the development of pre-leukemic HSCs with enhanced self-renewal capability, allowing clonal expansion and subsequent acquisition of Asxl-1 or Flt3 mutations leading to the formation of fully transformed leukemia stem cells. To define the role of mutant p53 in Asxl-1+/- HSCs, we generated p53R248W/+ Asxl-1+/- mice and performed in vitro serial replating assays as well as in vivo competitivebone marrow transplantation experiments. We found that p53R248W significantly enhanced the serial replating ability of Asxl-1-deficient bone marrow cells. Interestingly, while bone marrow from Asxl-1+/- mice had very poor engraftment compared to wild type bone marrow cells 16 weeks post-transplantation, the expression of p53R248W in Asxl-1+/- bone marrow rescued the defect. To examine the role of mutant p53 in Flt3-ITD-positive HSCs, we generated p53R248W/+ Flt3ITD/+ mice. We found that p53R248W enhanced the replating ability of Flt3ITD/+ bone marrow cells. Despite the fact that Flt3ITD/+ bone marrow cells displayed decreased repopulating ability compared to wild type cells 16 weeks post-transplant, expression of p53R248W in Flt3ITD/+ cells rescued the defect. We are monitoring leukemia development in primary and secondary transplant recipients as well as in de novo p53R248W/+ Asxl-1+/- and p53R248W/+ Flt3ITD/+ animals and predict that mutant p53 may cooperate with Asxl-1 deficiency or Flt3-ITD in the formation of LSCs to accelerate leukemia development in Asxl-1 deficient or Flt-ITD-positive neoplasms. Mechanistically, dysregulated epigenetic control underlies the pathogenesis of AML and we discovered that mutant p53 regulates epigenetic regulators, including Ezh1, Ezh2, Kdm2a, and Setd2, in HSCs. H3K27me3 is catalyzed by EZH1 or EZH2 of the Polycomb repressing complex 2 (PRC2). Both Ezh1 and Ezh2 are important for HSC self-renewal. SETD2 is a histone H3K36 methyltransferase and mutations in SETD2 have been identified in 6% of patients with AML. SETD2 deficiency resulted in a global loss of H3K36me3 and increased self-renewal capability of leukemia stem cells. We found that there were increased levels of H3K27me3 and decreased levels of H3K36me3 in p53R248W/+ HSCs compared to that of the WT HSCs. In ChIP experiments, we found that p53R248W, but not WT p53, was associated with the promoter region of Ezh2 in mouse myeloid progenitor cells, suggesting that p53R248W may directly activate Ezh2 expression in hematopoietic cells. Given that Asxl-1 has been shown to regulate H3K27me3 in HSCs, the synergy between mutant p53 and Asxl-1 deficiency on LSC self-renewal could be due to changes in histone modifications. Overall, we demonstrate that mutant p53 promotes the development of pre-leukemic HSCs by a novel mechanism involving dysregulation of the epigenetic pathways. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 449-449
Author(s):  
Haojian Zhang ◽  
Huawei Li ◽  
Shaoguang Li

Abstract Abstract 449 Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder induced by the BCR-ABL oncogene, and available BCR-ABL kinase inhibitors fail to completely eradicate leukemia stem cells (LSCs) to cure the disease. The challenge lies in the identification of genes that play a critical role in survival regulation of LSCs. Hypoxia-inducible factor-1α (HIF1α), a master transcriptional regulator of the cellular and systemic hypoxia response, is essential for the maintenance of self-renewal capacity of normal hematopoietic stem cells (HSCs). It is still unknown about the role of HIF1α in survival regulation of LSCs in CML. Using a mouse model of CML, here we report that HIF1α plays a crucial role in survival maintenance of LSCs. We conducted a DNA microarray analysis to compare the gene expression profiles between LSCs and normal HSCs in our bone marrow transplantation (BMT) mouse model of CML. We retrovirally transduced bone marrow cells from C57BL/6J (B6) mice with BCR-ABL-GFP or GFP alone (as a normal HSC control) and transplanted the transduced cells into lethally irradiate B6 recipient mice to induce CML. Two weeks after BMT, we sorted GFP+LSK (Lin−Sca-1+c-Kit+) cells from bone marrow of the mice for the Affymetrix microarray analysis. HIF1α gene was up-regulated by BCR-ABL in LSCs. We next examined expression of genes known to be specifically regulated by HIF1α, and found that expression of VEGF, GLUT1 and TGFa, except for PGK1, were significantly higher in LSCs than in HSCs. Real time RT-PCR assay confirmed the up-regulation of HIF1a and other hypoxia-responsive genes by BCR-ABL in LSCs. To determine the role of HIF1α in BCR-ABL leukemiogenesis, we crossed mice carrying a loxP-flanked HIF1a allele with Cre transgenic mice in which expression of Cre is driven by the Vav regulatory element to induce the deletion of the HIF1a gene mainly in the hematopoietic system. We transduced bone marrow cells from 5-FU-treated wild type (WT) or HIF1a−/− mice with BCR-ABL-GFP retrovirus, and then transplanted into lethally irradiated recipient mice to induce primary CML, followed by a secondary transplantation. We found that HIF1α−/− LSCs failed to induce CML in the secondary recipient mice, whereas WT LSCs efficiently induced CML. The defective CML phenotype in the absence of HIF1α was consistent with a gradual decrease of the percentages and total numbers of leukemia cells in peripheral blood and with much less severe splenomegaly. These results indicate that HIF1α is required for CML development, and suggest that HIF1α is required for survival maintenance of LSCs. To understand the underlying mechanisms, we analyzed the effect of HIF1α on cell cycle progression and apoptosis of LSCs, and found that the percentage of HIF1α−/− LSCs in the S-G2/M phase was significantly lower than that of WT LSCs, indicating that the HIF1α deficiency causes a cell cycle arrest of LSCs. Furthermore, we examined whether deletion of HIF1α induces apoptosis of LSCs by staining the cells with annexin V and 7AAD, and found that HIF1α−/− LSCs had a higher apoptotic rate than WT LSCs. We further compared expression levels of three cyclin-dependent kinase inhibitors p16Ink4a, p19Arf, and p57 between HIF1α−/− and WT LSCs, and found that the cell cycle arrest caused by the HIF1α deficiency was associated with significantly higher levels of expression of p16Ink4a, p19Arf and p57 in HIF1α−/− LSCs than in WT LSCs. In addition, we observed an increased expression of the apoptotic gene p53 in HIF1α−/− LSCs, explaining the increased apoptosis of HIF1α−/− LSCs. In summary, our results demonstrate that HIF1α represents a critical pathway in LSCs and inhibition of the HIF1α pathway provides a therapeutic strategy for eradicating LSCs in CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 551-551
Author(s):  
Zeenath Unnisa ◽  
Jason P Clark ◽  
Elizabeth Wojtowicz ◽  
Lino Tessarollo ◽  
Neal G. Copeland ◽  
...  

Abstract Abstract 551 Normal hematopoiesis is maintained by long-term hematopoietic stem cells (LT-HSCs) that are defined by their extensive self-renewal and multipotency. Self-renewal of LT-HSCs in turn is regulated by a complex network of intrinsic and extrinsic factors. The transcription factor MEIS1 is highly expressed in hematopoietic stem and progenitor cells and also in several leukemias, suggesting that MEIS1 might be important in regulating self-renewal. However, the role of MEIS1 in normal hematopoiesis has not been defined. To determine the role of MEIS1 in hematopoiesis, we studied conditional knockout mice. We generated transgenic mice bearing loxp sites flanking the homeodomain of MEIS1. The MEIS1-floxed mice were then bred to Rosa26-CreERT2 mice, the latter expressing cre-recombinase ubiquitously, that can be activated by estrogen or its analog Tamoxifen (Tam). Efficient, complete recombination was achieved in vivo by treating MEIS1-f/f-Cre (homozygous for MEIS1-flox) mice with Tam and in vitro by treating bone marrow cells with 4-hydroxy tamoxifen. Loss of MEIS1 expression was detected by QRT-PCR and western blotting. To determine the role of MEIS1 in the maintenance of adult hematopoiesis, MEIS1-f/f-Cre and control mice were treated with Tam and MEIS1 deletion confirmed by PCR. At three weeks post deletion, bone marrow analysis showed a significant reduction in the number of LT-HSCs defined as lin-/c-Kit+/Sca1+/CD48−/CD150+ in the MEIS1-depleted mice compared to controls (0.012% compared to 0.037%, N=6, p<0.05, t-test). However, the progenitor populations were unaffected by MEIS1 deletion. Over a period of 12 weeks of observation, the mice did not show any signs of distress and the peripheral blood counts of the experimental and control mice remained normal, indicating that short term hematopoiesis was not affected. Cell cycle analysis of LT-HSCs showed that MEIS1 deletion resulted in a significant shift of cells from G0 to G1 phase (G0 and G1 proportions respectively, 81.75±3.25% and 9.40±3% for control and 56.10±0.873% and 31.17±1.5% for MEIS1-deleted). To determine the effects of MEIS1 loss on intrinsic hematopoietic stem cell function, we performed competitive repopulation assays. Bone marrow cells harvested from MEIS1-f/f-Cre or MEIS1-f/+-Cre (control) mice were combined with equal numbers of bone marrow cells from BoyJ mice and transplanted via tail vein injection into lethally irradiated BoyJ mice. Four weeks after transplant, recipients were treated with Tam or vehicle for 5 days and deletion of MEIS1 confirmed by PCR on peripheral blood. Peripheral blood of recipient mice was analyzed at 1, 4, 8, 12 and 16 weeks after treatment and relative chimerism assessed by flow cytometry. At 1 and 4 weeks after treatment, the chimerism in the MEIS1 deleted group (Tam treated MEIS1-f/f-CreER) and the control groups (Tam treated MEIS1-f/+-CReER and vehicle treated MEIS1-f/f-CreER) was comparable (41%, 40.5% and 41.5% respectively, average, N=5 to 8). However, by 8 weeks after treatment, the MEIS1 deleted group showed a significant decline in chimerism compared to controls (18.2% compared to 43.1% and 35.1% respectively, p<0.02, t-test) and at 16 weeks the chimerism in the MEIS1-deleted group declined further (11.1% compared to 40.2% and 35.0% respectively, p<0.001). Subpopulation analysis showed loss of chimerism in granulocytes and in B and T lymphocytes. The latency and breadth of the effect of MEIS1 loss suggested an effect on the hematopoietic stem cell population. Indeed, bone marrow analysis of transplant recipients showed near complete loss of LT-HSC chimerism (3% compared to 70.25% and 75.6% respectively, p<0.001). Finally, we performed gene expression profiling on lineage negative bone marrow cells with and without MEIS1 deletion. Results showed that loss of MEIS1 was associated with decreased expression of hypoxia-responsive genes. Collectively, these results indicate that MEIS1 is required for the maintenance of the pool of LT-HSCs. Loss of MEIS1 promotes cycling and exhaustion of LT-HSCs. Further, we propose that activation of the hypoxia-response pathway may be one of the mechanisms by which MEIS1 exerts its effects on hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3863-3863
Author(s):  
Kei-ichiro Arimoto ◽  
Yue Zhang ◽  
Ming Yan ◽  
Sayuri Miyauchi ◽  
Stephanie Weng ◽  
...  

Abstract Stable and permanent hematopoiesis is established from the most primitive long-term self-renewing hematopoietic stem cells (LT-HSC), which can give rise to more differentiated short-term (ST-HSC) and multi-potent progenitors (MPP). Progenitors further differentiate into more committed cells that can generate the mature lymphoid and myeloid lineages. In order to maintain a normal hematopoietic system, HSCs must be properly regulated. We previously cloned Ubiquitin Specific Protease 18 (USP18/UBP43) during analysis of hematopoietic cells of t(8;21) AML fusion protein AML1-ETO knock-in mice (Liu et al, 1999 Mol Cell Biol 19:3029-3038; Schwer et al, 2000 Genomics 65, 44-52). However, its function in hematopoiesis, especially in hematopoietic stem cells, has not been carefully examined. We show here that depletion of Usp18 in C57/BL6 mice leads to death at embryonic days 13.5-14.5 with less fetal liver cellularity. To examine the precise role of Usp18 in vivo, we generated Usp18 conditional knockout mice (Usp18f/f). Survival analyses of Usp18f/- crossed with Usp18f/+Vav-iCre revealed that the embryonic lethality of Usp18 -deficient mice is due to defects in hematopoiesis. To examine the hematopoietic potential of fetal liver cells of Usp18-deficient mice, we conducted a colony forming assay using the E12.5 fetal livers. All types of colonies as well as the number of total cells from colonies were substantially reduced in Usp18-/- fetal liver compared to control, indicating that the blood progenitor cells of Usp18-/- fetal liver are not fully functional. To assess whether Usp18 is required for fetal liver HSC maintenance, we determined the frequency of HSCs in the fetal liver of Usp18+/+, Usp18+/-, and Usp18-/-. We detected the Lin- Sca-1+ c-Kit+ (LSK) cell population, which is HSC-enriched population in fetal livers, in mice of all three genotypes. Recent studies indicate that the most primitive LT-HSC population in fetal livers includes ESAM positive (LSK CD48- CD150+ ESAM+) stem cells (Ooi et al, 2009 Stem Cells 27:653-661; Pietras et al, 2014 JEM 211:245-262). Both the frequency and absolute numbers of the LT-HSC population in Usp18 -/- fetal livers were appreciably reduced compared to wild-type. Taken together, we conclude that Usp18 is indispensable for fetal liver HSC maintenance. We then addressed whether Usp18 is required for the HSC maintenance in adult mice by analyzing the frequency of HSCs in UBCER-Cre negative or positive Usp18 f/- bone marrow cells. After tamoxifen injections, we observed a significant reduction in the frequency of the LT-HSC population in Usp18f/-UBCER-Cre positive bone marrow cells compared to Usp18 f/-UBCER-Cre negative ones. Consistent with these results, Usp18 f/-UBCER-Cre positive bone marrow cells were much less competitive than Cre negative cells by competitive bone marrow transplantation assay. Finally, to examine whether the suppression of Usp18 in the leukemic cells provides a survival benefit, we used secondary-transplanted mice receiving Usp18f/fUBCER-Cre positive AML1-ETO9a leukemia cells (5 × 10 5 EGFP+ cells) isolated from primary transplanted mice. The tamoxifen treatment was initiated 3 weeks after transplantation. All the mice in the vehicle injected group (n = 7) succumbed to leukemia within a week after treatment started. However, mice treated with tamoxifen (n = 7) showed a longer survival time. Five of seven mice are still alive after 5 weeks of bone marrow transplantation, demonstrating the critical role of USP18 in maintenance of leukemia stem cells. Collectively, we conclude that Usp18 is essential for hematopoietic stem cell maintenance, and specific modulating activity of USP18 in leukemic cells may be considered as an effective therapeutic approach. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


Sign in / Sign up

Export Citation Format

Share Document