A Pivotal Role of Activation of Complement Cascade (CC) in Mobilization of Hematopoietic Stem/Progenitor Cells (HSPC)

Author(s):  
Mariusz Z. Ratajczak ◽  
Marcin Wysoczynski ◽  
Ryan Reca ◽  
Wu Wan ◽  
Ewa K. Zuba-Surma ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 774-774
Author(s):  
Marcin Wysoczynski ◽  
Ryan Reca ◽  
Wu Wan ◽  
Magda Kucia ◽  
Marina Botto ◽  
...  

Abstract We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPC) by i) immunoglobulin (Ig)-dependent pathway and/or by ii) alternative Ig-independent pathway and, as result of this, iii) several potent bioactive CC anaphylatoxins (C3a, desArgC3a, C5a and desArgC5a) are released (Blood2003;101,3784; Blood2004;103,2071; Blood2005;105,40). To learn more on the role of CC and innate immunity in this process, we compared mobilization in mice that possess defects in CC activation by i) classical pathway (C1q−/−, Ig-deficient), ii) both classical and alternative pathway (C2fB−/−) and in animals iii) that do not generate CC-derived anaphylatoxins (C3−/−, C5−/−). For mobilization, we employed G-CSF and zymosan that activate classical and alternative pathways of CC, respectively. First, we found by ELISA that CC activation in fact correlates with the level of HSPC mobilization. Next, studies in mice deficient in CC activation revealed that CC plays both pivotal and pleiotropic roles in this process. Accordingly, while C1q−/− and C3−/− mice turned out to be easy mobilizers, mobilization was very poor in Ig-deficient, C2fB−/− and C5−/− mice that demonstrate that C3 and C5 cleavage fragments differently control the mobilization of HSPC. To explain this at molecular level, we found that C3 cleavage fragments (C3a, desArgC3a) directly interact with HSPC and increase their responsiveness to SDF-1 gradient and thus prevent uncontrolled egress of HSPC from BM. It explains why C1q−/− and C3−/− mice that do not generate C3 cleavage fragments in BM release easily HSPC into circulation. In contrast, C5 cleavage fragments (C5a, desArgC5a) increase permeability of BM-endothelium and thus are crucial for the egress of HSPC from BM to occur. This explains why mice that do not activate efficient CC such as Ig-deficient, C2fB−/− and C5−/− animals are poor mobilizers. We conclude that the mobilization of HSPC is i) dependent on C activation by the classical or alternative pathway and balanced differently by C3 and C5 cleavage fragments that enhance retention or promote egress of HSPC respectively. Thus, modulation of C activation in BM may help to develop new more efficient strategies for both HSPC mobilization and their homing/engraftment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 367-367
Author(s):  
Marcin Wysoczynski ◽  
HakMo Lee ◽  
Rui Liu ◽  
Wan Wu ◽  
Janina Ratajczak, ◽  
...  

Abstract Abstract 367 We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) by immunoglobulin (Ig)-dependent pathway and/or by alternative Ig-independent pathway as seen during G-CSF- or Zymosan mobilization, respectively. As a result, several potent bioactive CC anaphylatoxins (C3 and C5 cleavage fragments) are released that regulate egress of HSPCs (Blood 2003;101,3784; Blood 2004;103,2071; Blood 2005;105,40, Leukemia 2009; in press.). This explains why: i) NOD/SCID and RAG-/- animals that do not activate the Ig-dependent CC classical pathway; ii) C2fB-/- and C3-/- mice that do not activate the classical and alternative CC pathways; and iii) C5-/- mice that do not activate the distal pathway of CC are all poor G-CSF- and/or Zymosan mobilizers. In this study, we evaluated the role of CC in mobilization induced by CXCR4 antagonist AMD3100. We noticed that all CC activation-deficient mice mentioned above, except C5-/- mice, mobilize normally in response to AMD3100 administration. Accordingly, the number of mobilized CD34- SKL cells, leucocytes, and CFU-GM clonogeneic progenitors in mutant mice was similar to wt littermates. More important we observed that AMD3100 mobilization of HSPCs was preceded by a massive egress of leucocytes from BM and that AMD3100 was able to stimulate in these cells i) phosphorylation of MAPKp42/44 and ii) secretion of MMP-9. At the same time, ELISA data to detect CC activation revealed that serum levels of CC cleavage fragments, which were low in the initial phase of AMD3100 mobilization during granulocyte egress, become elevated later during HSPC egress. Thus, our data show that despite a fact that G-CSF and AMD3100 mobilize HSPCs by involving different mechanisms, activation of CC is a common phenomenon occurring during mobilization induced by both compounds. This further supports a pivotal role of CC activation in the egress of HSPCs from BM; however, both compounds activate CC differently. While G-CSF administration initiates CC activation at its proximal C1q-C3 level, AMD3100 induces CC activation at the distal C5 level, pointing to a crucial role of C5 cleavage in executing mobilization. To support this, all mice employed in our studies that display defects in activation of proximal stages of CC (NOD/SCID, RAG, C2fB-/-, and C3-/-) are normal AMD3100 mobilizers. However, C5 is cleavage required for mobilization occurs in the plasma of these animals latter on - directly by proteases released from AMD3100-stimulated granulocytes that egress from the BM as a first wave of mobilized cells. This compensatory mechanism cannot occur from obvious reasons in C5-/- mice. We conclude that AMD3100-directed mobilization similarly as G-CSF-induced one depends on activation of CC; however, AMD3100 in contrast to G-CSF activates CC at distal stages – directly by proteases released from mobilized/activated granulocytes. Cleavage of C5 and release of C5a and desArgC5a create a sinusoid-permissive environment in BM for HSPCs egress. This suggests involvement of both C5 cleavage fragments as well as a potential role of downstream elements of CC activation - membrane attack complex - MAC (C5b-C9) in stem cell mobilization. Therefore, some poor AMD3100 patient responders could possess a defect in activation of the distal steps of CC. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Mateusz Adamiak ◽  
Andrzej Ciechanowicz ◽  
Vira Chumak ◽  
Kamila Bujko ◽  
Janina Ratajczak ◽  
...  

AbstractWe reported in the past that activation of the third (C3) and fifth element (C5) of complement cascade (ComC) is required for a proper homing and engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs). Since myeloablative conditioning for transplantation triggers in recipient bone marrow (BM) state of sterile inflammation, we have become interested in the role of complement in this process and the potential involvement of alternative pathway of ComC activation. We noticed that factor B deficient mice (FB-KO) that do not activate properly alternative pathway, engraft poorly with BM cells from normal wild type (WT) mice. We observed defects both in homing and engraftment of transplanted HSPCs. To shed more light on these phenomena, we found that myeloablative lethal irradiation conditioning for transplantation activates purinergic signaling, ComC, and Nlrp3 inflammasome in WT mice, which is significantly impaired in FB-KO animals. Our proteomics analysis revealed that conditioned for transplantation lethally irradiated FB-KO compared to normal control animals have lower expression of several proteins involved in positive regulation of cell migration, trans-endothelial migration, immune system, cellular signaling protein, and metabolic pathways. Overall, our recent study further supports the role of innate immunity in homing and engraftment of HSPCs. Graphical Abstract


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3736-3736
Author(s):  
Tanabe Mikoto ◽  
Nguyen Hoang Maianh ◽  
Kohei Hosokawa ◽  
Noriharu Nakagawa ◽  
Luis Espinoza ◽  
...  

[Background] Glycosylphosphatidylinositol-anchored proteins (GPI-APs) on hematopoietic stem progenitor cells (HSPCs) may have some roles in the negative regulation of the HSPC commitment induced by inflammatory cytokines given the fact that progenies of GPI(-) HSPC are often detected in patients with immune-mediated bone marrow (BM) failure. CD109, one of the GPI-APs expressed by keratinocytes and HSPCs in humans, serves as a TGF-β co-receptor and is reported to inhibit TGF-β signaling in keratinocytes; however, the role of CD109 on HSPCs remains unknown. We previously demonstrated that TGF-β induced erythroid differentiation of TF-1 cells, a myeloid leukemia cell line that expresses CD109, in a dose-dependent manner and that knockout of the CD109 gene resulted in erythroid differentiation of TF-1 cells cultured in fetal bovine serum-containing medium, suggesting an inhibitory role of CD109 in the erythroid differentiation of HSPCs induced by low levels of TGF-β (Blood, 2018. 132 (Suppl.1) :3874). However, as most CD109 KO TF-1 cells changed into erythroid cells, they were unsuitable for investigating the role of CD109 in the erythroid differentiation induced by TGF-β. To overcome this issue, we prepared TF-1 cells and cord blood (CB) HSPCs in which the CD109 expression was transiently downregulated, and attempted to further clarify the role of CD109. [Methods] TF-1 cells and CD34+ cells isolated from CB mononuclear cells were treated with siRNA that was complementary to CD109 mRNA. CD109 knockdown cells were cultured for 4 days in serum-free medium supplemented with stem cell factor, thrombopoietin, and erythropoietin with or without TGF-β. In separate experiments, TF-1 cells were treated with phosphatidylinositol-specific phospholipase C (PIPL-C) treatment for 1 hour and were incubated in the presence or absence of TGF-β. CD109 KO TF-1 cells were incubated in serum-free medium (StemPro-34 SFM) for 14 days and their phenotype was determined using flow cytometry (FCM). The erythroid differentiation of the cells was assessed by testing the expression of glycophorin A (GPA) and iron staining. [Results] The down-regulation of CD109 in TF-1 cells by the siRNA treatment increased GPA expression in response to 12 ng/ml of TGF-β from 1.77% to 35.6%. The transient depletion of GPI-APs by PIPL-C also augmented the GPA expression induced by TGF-β from 1.27% to 6.77%. In both BM of healthy individuals and CB, CD109 was more abundantly expressed in Lin-CD34+CD38-CD90+CD45RA- hematopoietic stem cells (HSCs) than in Lin-CD34+CD38-CD90-CD45RA- multipotent progenitors (MPPs) and Lin-CD34+CD38+ HSPCs (Fig. 1). The treatment of CB cells with siRNA reduced the CD109 expression in Lin-CD34+CD38+ cells from 55.9% to 23.1%. TGF-β induced the expression of GPA in Lin-CD34+CD38+CD123-CD45RA- megakaryocyte-erythrocyte progenitor cells (MEPs) of CD109 knockdown cells to a greater degree than the control counterpart (Fig. 2). During 14-day serum-free culture, GPA-positive CD109 KO TF-1 cells died, and similarly to WT TF-1 cells, most surviving CD109 KO TF-1 cells were GPA-negative. TGF-β treatment induced erythroid differentiation in CD109 KO TF-1 cells to a greater degree than in WT TF-1 cells. [Conclusions] CD109 plays a key role in the inhibition of TF-1 erythroid differentiation in response to TGF-β. CD109 may suppress TGF-β signaling, and the lack of CD109 may make PIGA-mutated HSPCs more sensitive to TGF-β, thus leading to the preferential commitment of the mutant erythroid progenitor cells to mature red blood cells in immune-mediated BM failure. Disclosures Yamazaki: Novartis Pharma K.K.: Honoraria; Sanofi K.K.: Honoraria; Nippon Shinyaku Co., Ltd.: Honoraria. Nakao:Novartis Pharma K.K: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda Pharmaceutical Company Limited: Honoraria; Celgene: Honoraria; Ono Pharmaceutical: Honoraria; Chugai Pharmaceutical Co.,Ltd: Honoraria; Kyowa Kirin: Honoraria; Alaxion Pharmaceuticals: Honoraria; Ohtsuka Pharmaceutical: Honoraria; Daiichi-Sankyo Company, Limited: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; SynBio Pharmaceuticals: Consultancy.


2016 ◽  
Vol 25 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Janina Ratajczak ◽  
Mariusz Z. Ratajczak

2013 ◽  
Vol 41 (8) ◽  
pp. S44
Author(s):  
Praveen Kumar ◽  
Aurélie Baudet ◽  
Ineke De Jong ◽  
Jonas Larsson

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1394-1394
Author(s):  
Sachiko Ezoe ◽  
Itaru Matsumura ◽  
Hirokazu Tanaka ◽  
Yusuke Satoh ◽  
Takafumi Yokota ◽  
...  

Abstract Sir2 (silent information regulator 2) is a member of a gene family (sirtuins) encoding NAD(+)-dependent histone deacetylases, which leads to increased DNA stability and prolonged lifespan in Saccharomyces cerevisiae and Caenorhabditis elegans. In mammalians, SIRT1 has also been found to function as a deacetylase for numerous protein targets involved in various cellular pathways, including stress responses, apoptosis, and neural axonal degeneration. However, the effects of SIRT1 on hematopoiesis remains unknown. We previously reported that the SIRT1 inhibitor, nicotinamide(NA), promoted the differentiation of murine hematopoietic stem/progenitor cells, and its activator, Resveratrol, suppressed the differntiation. In this report, we analysed the differentiation of stem/progenitor cells derived from SIRT1 KO mice. Because SIRT1 KO mice can survive less than a week after birth, we performed experiments using c-Kit(+)Lineage(−)Sca-1(+) cells (KSLs) derived from KO mice fetal liver. At first, we cultured KSLs with the cytokine cocktail containing SCF, IL-6, Flt3L, and TPO, which is utilized for the expansion of stem cells. After five day culture, we estimated the population which remains in KSL fraction. As a result, percentage of KSLs from KO fetal liver was less than 5%, while that from WT was about 15%. We also examined the colony formation of KO and WT fetal liver KSL cells using replating assays. At the first plating, total number of colonies developed from KO fetal liver KSLs was smaller than that from WT by 30–40%, and at the third plating, there could be detected no colonies from KO, while 20–30 colonies were observed from WT. Furthermore, we performed serial transplantation assays using WT and KO fetal liver KSLs. Although after primary transplant, we detected no significant difference in repopulation from KO KSLs compared to WT controls, three weeks after secondary transplant, % chimerism from KO KSLs was reduced to 1/2 compared with that from WT KSLs. These results suggested that Sirt1 suppresses the differentiation and promotes self-renew of hematopoietic stem/progenitor cells. To dissect the roles of target molecules of Sirt1 in suppression of differentiation, we first examined the mRNA expressions of some cell cycle-relating molecules in KO and WT fetal liver KSLs. As consequence, p16Ink4A and p19Arf were detected only in KO KSLs. Then we analyzed the roles of molecules which may effect those expressions. First, we examined the effects of MAPkinases inhibitors on the differentiation of KO and WT fetal liver KSLs. During the culture with SCF, IL-6, Flt3L, and TPO, the addition of p38 inhibitor(SB202190), or MEK1 inhibitor(PD98059), or JNK inhibitor did not change the effects of the SIRT1 targeting. Then it was suggested that MAPkinase pathways have little relation with the SIRT1-induced suppression of differentiation. Next we examined the role of p53, which was reported to combine with SIRT1 and to be deacetylated and repressed by SIRT1. KO and WT fetal liver KSLs were cultured with p53 inhibitor (pifithrin?), which partially cancelled the promotion of differntiation in SIRT1 KO KSLs. This result suggested that SIRT1 might inhibit differentiation of KSLs partially by antagonizing p53 activity. Next we examined the role of Foxo3a, a downstream molecule of SIRT1. Enforced expression of constitutive active form of Foxo3a(FKHRL1TM) also cancelled the promotion of differentiation in SIRT1 KO KSLs. As conclusion, we demonstrate that SIRT1 suppresses the differentiation of hematopoietic stem/progenitor cells by antagonizing p53 and enhancing Foxo3a activities, and contributes to maintenance of stem cell properties and stem cell pool.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 67-67
Author(s):  
Wan Wu ◽  
Hakmoo Lee ◽  
Marcin Wysoczynski ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
...  

Abstract We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) by immunoglobulin (Ig)-dependent pathway and/or by alternative Ig-independent pathway and, as result of this, several potent bioactive CC anaphylatoxins (C3a, desArgC3a, C5a and desArgC5a) are released (Blood2003;101,3784; Blood2004;103,2071; Blood2005;105,40). Bioactive CC anaphylatoxins (C5a and desArgC5a) are also potent chemoattractants of granulocytes that bind to G-protein-coupled, seven trans-membrane span C5a receptors (C5aR and C5L2) on these cells. To learn more on the role of C5 cleavage fragments in HSPC mobilization, we studied mobilization in C5−/− and C5aR−/− mice as well as their normal wildtype littermates. Mobilization was induced by granulocyte colony-stimulating factor (G-CSF; high 250 μg/kg/6 days and low dose 50 μg/kg/6 days) or zymosan (20 mg/1kg/1 hour), which activate classical and alternative pathways of CC, respectively. We evaluated mobilization efficiency by counting the number of SKL cells, colony-forming unit granulocyte-macrophages (CFU-GMs), and white blood cells circulating in peripheral blood. In parallel, we employed transmission electron microscopy (TEM) to study the morphology and integrity of BM vessels in the BM-blood barrier. Activation of CC was measured by ELISA for C3 cleavage fragments and by histochemical staining for membrane attack-complex (MAC) depositions in BM tissue. We found by ELISA and histochemistry that CC activation correlates with the level of HSPC mobilization in wildtype mice and that mobilization of HSPCs was always preceded by the release of granulocytes from BM. Thus, granulocytes are the first wave of cells that increase in number during mobilization in peripheral blood. Mobilization studies in C5−/− revealed that these animals are very poor mobilizers. TEM studies demonstrated that hematopoietic cells together with granulocytes accumulated around small vessels in the BM of C5−/− animals, but they did not migrate or cross the BM-endothelial barrier. Since C5 cleavage fragments C5a and desArgC5a are potent chemoatrractants for granulocytes but not HSPCs, we hypothesize that a lack of both these anaphylatoxins in C5−/− animals prevents egress of granulocytes from BM, which always precedes egress of HSPCs. Furthermore, in C5aR−/−, mice mobilization was normal after administration of a high optimal dose of G-CSF. However, mobilization was significantly lower after a suboptimal dose of G-CSF or administration of zymosan. This indicates that another alternative receptor for C5a and desArgC5a (C5L2) may compensate for C5aR deficiency and that it plays a role in the egress of granulocytes from the BM as well. Thus, this study demonstrates that cells from the granulocytic lineage are actively involved in mobilization in a C5a,-desArgC5a-C5aR manner not only by secreting proteases that create a proteoytic environment in BM, but also as a kind of “ice-breaker” type cells necessary for disintegration of the endothelial-BM barrier to enable HSPCs to egress from the BM microenvironment. In cases of granulocytopenia or if granulocytes are not mobilized as seen in C5−/− mutants, mobilization of HSPCs is very poor. Thus, modulation of CC activation in the BM and stimulation of granulocyte egress from the BM into circulation may help to develop more efficient strategies for HSPC mobilization.


Sign in / Sign up

Export Citation Format

Share Document